Will Multicore Kill the x86?

By Michael Feldman

January 8, 2009

The hardware and software challenges of multicore/manycore CPUs have been flogged in this publication for a number of years. The assumption was that geek ingenuity would eventually power through the roadblocks. The memory wall problem would yield to innovative hardware architectures, and new software development approaches would make multithreaded computing practical enough for widespread use. But what if that doesn’t happen?

There’s a good article in the January/February 2009 issue of Technology Review that outlines multicore computing challenges and talks about some of the software strategies being pursued by Intel, Microsoft and others in the industry. But the most interesting part of the article is toward the end, where the author allows for the possibility that the whole multicore paradigm may just fall apart:

So what’s the downside if multicore computing fails? What is the likely impact on our culture if we take a technical zig that should have been a zag and suddenly aren’t capable of using all 64 processor cores in our future notebook computers?

For a positive spin on this outcome, the author quotes Apple Computer co-founder Steve Wozniak, who apparently believes the end of Moore’s Law-driven microprocessor evolution would be a good thing:

“I can’t wait!” says Steve Wozniak, the inventor of the Apple II. “The repeal of Moore’s Law would create a renaissance for software development,” he claims. “Only then will we finally be able to create software that will run on a stable and enduring platform.”

Of course, the other way to create a stable platform is to build scalability into the software model so that the number of cores is transparent to the application. The idea is that jumping from 8 to 64 cores automatically gives an application better performance, without recoding or even recompilation. That’s the thrust behind the work Intel, Microsoft and university researchers are doing today.

Some industry luminaries, like Professor David May at Bristol University, thinks replicating cores using legacy architectures is the real problem, given that conventional CPUs like the x86 were never designed for parallel processing. He elaborated his position in October in an Electronics Weekly article on the pitfalls of multicore programming:

Current attempts to use multi-cores in the mainstream computing world, like the efforts made by Intel and Microsoft with a bunch of US universities, may be doomed. “I think they (Intel and Microsoft) are trying to solve a different problem,” said May, “they’re taking all the PC applications and putting them on multi-cores. That’s a very different problem and, in my view, they won’t be very successful. Taking sequential programmes and trying to make them run in parallel is virtually impossible.”

May is also the CTO of XMOS Semiconductor, a company that has developed a multicore architecture that uses “software defined silicon” to combine some of the best attributes of ASICs and FPGAs. The resulting processor is aimed at the consumer electronics market.

Perhaps along the same lines is Creative Technology’s just-announced Zii processor, which also claims to use software defined silicon in its newly minted 10 gigaflops chip. Like the XMOS silicon, Zii is targeted for the consumer space, although the Web site video hyperventilates about building a petaflop supercomputer with a mere six racks of Zii processors. Maybe if they were IBM, they’d actually attempt it.

In any case, for most kinds of client-side computing, the x86 architecture may truly be a dead end. Since the Internet became the center of the computing universe, PCs have been morphing from general-purpose computing appliances to thin clients. This will continue as more and more computing is moved into the cloud. As clients get ever thinner, the main computing load is data transcoding, which generally can be accomplished with greater efficiency using more specialized silicon like GPUs, FPGAs, DSPs and maybe these new-fangled software defined silicon gadgets. In that sense, PCs are becoming more like handheld devices.

Where would that leave server-side computing, especially HPC? For throughput and capacity computing, CPU-based architectures still offer a reasonably-natural computing architecture. But for many HPC applications, and for capability supercomputing in particular, the inherently parallel architectures of GPUs, Cell processors and FPGAs offer a better fit (although a CPU companion is still needed at this point). The high level of interest with GPGPUs, Cell processors and FPGAs is one indication that supercomputing might be turning away from conventional CPUs.

Economics will dictate that mainstream HPC will continue to rely on the same processor architectures used in consumer electronics. But one day, those chips may be something other than x86.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire