Since 1986 - Covering the Fastest Computers in the World and the People Who Run Them

Language Flags
January 21, 2009

New Administration, Congress Aim to Boost Federal R&D

by Michael Feldman

With U.S. businesses in full retreat, the new Obama administration and Congress are committed to injecting an enormous stimulus of federal money into the economy. At least some of this seems destined to end up as increased spending on science and technology R&D, and by extension, high performance computing.

That will be welcome news for the tech community, who has been pleading for more funding for basic science research for over a decade. The America COMPETES Act, signed into law in 2007, supported doubling funding for basic research programs in physical sciences, namely nanotechnology, alternative energy and supercomputing. But money was never appropriated at the levels that COMPETES called for. Measured in real dollars, U.S. government spending on physical sciences R&D has generally been on the decline since the 1990s, and even funding for life sciences has been dropping since 2004.

President Obama has repeatedly called for a doubling of federal funding for basic research over ten years. With than in mind, the American Recovery And Reinvestment Act currently before Congress provides for $10 billion toward science facilities, research, and instrumentation (out of a total allocation of $550 billion in government spending, plus $275 billion in tax cuts). The breakdown for the science research funding is as follows:

  • National Science Foundation: $3 billion, including $2 billion for expanding employment opportunities in fundamental science and engineering to meet environmental challenges and to improve global economic competitiveness, $400 million to build major research facilities that perform cutting edge science, $300 million for major research equipment shared by institutions of higher education and other scientists, $200 million to repair and modernize science and engineering research facilities at the nation’s institutions of higher education and other science labs, and $100 million is also included to improve instruction in science, math and engineering.

  • National Institutes of Health Biomedical Research: $2 billion, including $1.5 billion for expanding good jobs in biomedical research to study diseases such as Alzheimer’s, Parkinson’s, cancer, and heart disease — NIH is currently able to fund less than 20 percent of approved applications — and $500 million to implement the repair and improvement strategic plan developed by the NIH for its campuses.

  • University Research Facilities: $1.5 billion for NIH to renovate university research facilities and help them compete for biomedical research grants. The National Science Foundation estimates a maintenance backlog of $3.9 billion in biological science research space. Funds are awarded competitively.

  • Centers for Disease Control and Prevention: $462 million to enable CDC to complete its Buildings and Facilities Master Plan, as well as renovations and construction needs of the National Institute for Occupational Safety and Health.

  • Department of Energy: $1.9 billion for basic research into the physical sciences including high-energy physics, nuclear physics, and fusion energy sciences and improvements to DOE laboratories and scientific facilities. $400 million is for the Advanced Research Project Agency — Energy to support high-risk, high-payoff research into energy sources and energy efficiency.

  • NASA: $600 million, including $400 million to put more scientists to work doing climate change research, including Earth science research recommended by the National Academies, satellite sensors that measure solar radiation critical to understanding climate change, and a thermal infrared sensor to the Landsat Continuing Mapper necessary for water management, particularly in the western states; $150 million for research, development, and demonstration to improve aviation safety and Next Generation air traffic control (NextGen); and $50 million to repair NASA centers damaged by hurricanes and floods last year.

  • Biomedical Advanced Research and Development, Pandemic Flu, and Cyber Security: $900 million to prepare for a pandemic influenza, support advanced development of medical countermeasures for chemical, biological, radiological, and nuclear threats, and for cyber security protections at HHS.

  • National Oceanic and Atmospheric Administration Satellites and Sensors: $600 million for satellite development and acquisitions, including climate sensors and climate modeling.

  • National Institute of Standards and Technology: $300 million for competitive construction grants for research science buildings at colleges, universities, and other research organizations and $100 million to coordinate research efforts of laboratories and national research facilities by setting interoperability standards for manufacturing.

  • Agricultural Research Service: $209 million for agricultural research facilities across the country. ARS has a list of deferred maintenance work at facilities of roughly $315 million.

  • U.S. Geological Survey: $200 million to repair and modernize U.S.G.S. science facilities and equipment, including improvements to laboratories, earthquake monitoring systems, and computing capacity.

If the bill is passed and the money is appropriated as is, that would be a huge boost for these organizations’ research efforts. There’s no telling how much of this would trickle down to HPC infrastructure, programs and jobs since the spending details would ultimately be up to the individual agencies. For the long-term, the more salient issue is whether these increases would be maintained to keep R&D funding on the kind of trajectory called out by the COMPETES Act.

Peter Harsha, the director of Government Affairs at the Computing Research Association, reports that at least the money targeted for R&D infrastructure in the stimulus bill may be a one-time deal:

[I]n our meetings with congressional staff over the last couple of weeks, there has been some concern about managing expectations about the sustainability of any of this funding beyond the stimulus. There are no promises that this stimulus funding will establish a new baseline funding level for these science agencies. There is the possibility that this truly is “one and done.” The report language doesn’t speak to that directly, but seems to suggest that the idea with this influx of research funding in what was thought to be simply an “infrastructure” bill is to reestablish a trajectory towards the doubling targets in the America COMPETES Act. If that’s the case, we should expect that future appropriations bills will start with a funding level of $8 billion for NSF, for example (because $1 billion of the $3 billion increase is for a “one-time” infrastructure investment, while the remaining $2 billion is a research investment), and not revert back to the $6 billion pre-stimulus level. Hard to know exactly what the intent is and it’s hard to reach the appropriations staff to hear it from them directly.

If so, post-stimulus R&D funding will revert to the classic struggle of discretionary spending between budget hawks and doves. But the political winds may indeed be shifting. President Obama’s commitment to boost federally-funded research should find a receptive audience in the Democratic-controlled Congress. In his inaugural speech, the new President pledged to “restore science to its rightful place.” After years of uninspired government support for science and technology, the federal R&D machine that produced the Internet and decoded human genomes may be back in business.

Tags: , ,

SC14 Virtual Booth Tours

AMD SC14 video AMD Virtual Booth Tour @ SC14
Click to Play Video
Cray SC14 video Cray Virtual Booth Tour @ SC14
Click to Play Video
Datasite SC14 video DataSite and RedLine @ SC14
Click to Play Video
HP SC14 video HP Virtual Booth Tour @ SC14
Click to Play Video
IBM DCS3860 and Elastic Storage @ SC14 video IBM DCS3860 and Elastic Storage @ SC14
Click to Play Video
IBM Flash Storage
@ SC14 video IBM Flash Storage @ SC14  
Click to Play Video
IBM Platform @ SC14 video IBM Platform @ SC14
Click to Play Video
IBM Power Big Data SC14 video IBM Power Big Data @ SC14
Click to Play Video
Intel SC14 video Intel Virtual Booth Tour @ SC14
Click to Play Video
Lenovo SC14 video Lenovo Virtual Booth Tour @ SC14
Click to Play Video
Mellanox SC14 video Mellanox Virtual Booth Tour @ SC14
Click to Play Video
Panasas SC14 video Panasas Virtual Booth Tour @ SC14
Click to Play Video
Quanta SC14 video Quanta Virtual Booth Tour @ SC14
Click to Play Video
Seagate SC14 video Seagate Virtual Booth Tour @ SC14
Click to Play Video
Supermicro SC14 video Supermicro Virtual Booth Tour @ SC14
Click to Play Video