Of Unknown Origin: Diagnosing Cancer in the Cloud

By Michael Feldman

February 25, 2009

As the economic recession digs in, HPC looks like it’s in for a rough ride for at least the next 18 months. But even while HPC capital expenditure budgets are getting cut or frozen, renting HPC cycles in the cloud never looked so good and customers are starting to catch on.

One of those customers is Pathwork Diagnostics, a six-year-old biotech startup specializing in cancer diagnostic products. Pathwork combines DNA microarray technology with machine learning software to help identify cancer types. As a relatively-small company of 35 employees, Pathwork is constrained as to how much it can spend on IT infrastructure. But the emergence of commercial cloud computing along with the latest gene chip technology is opening up new opportunities for these types of firms.

Until recently, microarray chips have been generally used for genomic research. But applying the technology to tumor tissue provides a detailed view of a cancer’s gene expression profile. Running that profile through Pathwork’s software enables scientists to classify the source of the cancer — lung, kidney, breast, prostate, etc. — with the idea to apply that knowledge to clinical treatment.

The majority of cancers don’t require such sophisticated technology, although it’s not simply a matter of finding a tumor with an MRI and concluding the local site is the origin of the cancer. For example, a liver tumor may actually have its origin as lung cancer, as a result of metastases. Even so, sometimes visual examination of biopsied tissue isn’t enough for identification. In that case, more sophisticated diagnostics like immunohistochemistry (IHC) can be used. IHC tests are able to detect proteins in tumor tissue that can be mapped to specific types of cancer. However sometimes even these tests fail to provide a definitive answer. About 5 to 10 percent of all cancers fall in this category.

That’s where the Pathwork solution comes in. The company’s “Tissue of Origin” test measures a specimen’s RNA expression pattern of more than 1,500 genes. The resulting data is run through machine learning algorithms, which compare the expression profile to 15 known tissue types to help determine to the cancer’s origin.

The output of the diagnostic is a simple table of numbers that rank the probability of the type of cancer. For example, the application might give a score of 80 to lung cancer, 10 to breast cancer, 5 to kidney cancer, and so on. Ljubomir Buturovic, chief scientist at Pathwork, says they typically get a score of 70-80 for the most likely tissue match, which provides a good basis for treatment. In clinical trials, he says they achieved 89 percent accuracy at identifying the cancer source.

“So our product is in essence a classifier,” explains Buturovic, “which takes the gene expression measurements from a tumor and produces a score that predicts the probability that the cancer originated in a particular organ or tissue type.” Buturovic says this information may aid the oncologist in recommending a targeted treatment corresponding to the specific cancer.

As one might imagine, the cancer identification algorithm software requires a good deal of computing horsepower. Pathwork has been maintaing its own 120-core cluster, consisting of dual- and single-socket x86 compute nodes, for both diagnostic work and research. But inevitably the company found it needed more computing capacity to handle the growing number of jobs. After looking at the capital expenditure of expanding its computing capacity in-house versus renting cycles from a service provider, it became convinced that the service model made a lot more sense to the company.

Buturovic says the deciding factor was that Pathwork had a peak computing demand about once every three months, which would have required a capital expenditure “prohibitively large” for a company its size. In addition, some the algorithms it employs are very demanding when applied against its data sets, and would take months to execute on the in-house cluster. So offloading this type of work to a larger cluster would save quite a bit of time.

Since Pathwork was already using Sun Microsystems’ open source Sun Grid Engine (SGE) for cluster load balancing, the company originally considered using Sun’s Network.com utility computing grid. But the $1/CPU-hour price was too steep for Pathwork. At some point, it heard about Amazon’s Elastic Cloud (EC2) cloud platform, with its more “convenient” pricing of just $0.10/CPU-hour. Probably the most well-known cloud computing platform in the world, EC2 provides scalable utility computing for a wide range of application types.

Pathwork came to Univa UD when it learned that the company’s UniCloud solution supported the Sun Grid Engine on the Amazon cloud. Introduced in December 2008, UniCloud allows a cluster to be provisioned in the Amazon EC2 infrastructure as an extension of Univa’s UniCluster job scheduler. UniCloud can either extend a local cluster into the Amazon cloud or simply provision a stand-alone cluster entirely on Amazon hardware. In the case of Pathwork, the company chose the latter model.

Using the UniCloud/EC2 platform, Pathwork’s applications are now running on up to 500 cores in the Amazon cloud and have garnered a 4-5x increase in speed. Since some of Pathwork’s larger jobs can take months to execute in-house, using Amazon’s resources reduces that time to just weeks, says Buturovic.

Based on Pathwork’s usage pattern, the company calculated that it would save two-thirds of the cost by running its peak applications in the Amazon cloud versus building and maintaining the equivalent system in-house. Amortizing the system cost over five years and taking into account the EC2 CPU costs plus the consulting services paid to Univa UD, that came out to a savings of around $177,000 per year.

Pathwork may end up buying even more cycles on Amazon, as soon as it figures out how to scale its software beyond 500 cores. At 10 cents per CPU hour, the incremental cost for more computing capacity is rather low compared to the potential savings in turnaround time for its research and diagnostic work.

Univa isn’t sitting still either. Although the first version of UniCloud is limited to Amazon EC2, Univa is already in talks with other cloud providers to extend the software to more utility computing platforms.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire