NVIDIA Shifts GPU Clusters Into Second Gear

By Michael Feldman

May 4, 2009

GPU-accelerated clusters are moving quickly from the “kick the tires” stage into production systems, and NVIDIA has positioned itself as the principal driver for this emerging high performance computing segment.

The company’s Tesla S1070 hardware, along with the CUDA computing environment, are starting to deliver real results for commercial HPC workloads. For example Hess Corporation has a 128-GPU cluster that is performing seismic processing for the company. The 32 S1070s (4 GPUs per board) are paired with dual-socket quad-core CPU servers and are performing at the level of about 2,000 dual-socket CPU servers for some of their workloads. For Hess, that means it can get the same computing horsepower for 1/20 the price and for 1/27 the power consumption.

Hess is not alone. Brazilian oil company Petrobas has built a 72-GPU Tesla cluster for its seismic codes. Although the company hasn’t released specific performance data, based on preliminary testing, Petrobas expects to see a 5X to 20X improvement compared to a CPU-based cluster platform. Chevron and Total SA are also experimenting with GPU acceleration and although they haven’t divulged what types of systems are being used, NVIDIA products are almost certainly in the mix.

BNP Paribas, a French banking firm, is using a Tesla S1070 to compute equity pricing on the derivatives the company tracks. According to Stéphane Tyc, head of the company’s Corporate and Investment Banking Division in the GECD Quantitative Research group, they were able to achieve the same performance as 500 CPU cores with just half a Tesla board (two GPUs). Better yet, the platform delivered a 100-fold increase in computations per watt compared to a CPU-only system. “We were actually surprised to get numbers of that magnitude,” said Tyc. As of March, BNP Paribas had not deployed the system for live trading, but there are already plans in place to port more software.

Up until now, all of these GPU-accelerated clusters had to be custom-built. In an effort to get a more “out of box” experience for GPU cluster users, NVIDIA has launched its “Tesla GPU Preconfigured Cluster” strategy. Essentially, it’s a set of guidelines for OEMs and system builders for NVIDIA-accelerated clusters, the idea being to make GPU clusters as easy to order and install as their CPU-only counterparts. It’s basically a parallel strategy to NVIDIA’s personal supercomputer workstation program, which the company rolled out in November 2008.

The guidelines consist of a set of hardware and software specs that define a basic GPU cluster configuration. In a nutshell, each cluster has a CPU head node that runs the cluster management software, an InfiniBand switch for node-to-node communication, and four or more GPU-accelerated compute nodes. Each compute node has a CPU server hooked up to a Tesla S1070 via PCI Express. On the software side, a system includes clustering software, MPI, and NVIDIA’s CUDA development tools. Most of this is just standard fare, but the cluster software is typically a Rocks roll for CUDA or something equivalent.

NVIDIA itself isn’t building any systems. As the company did with personal supercomputing, it has enlisted partner OEMs and distributors to offer GPU-accelerated clusters. The system vendors can add value by selling their own clustering software, tools, services and hardware options. Currently NVIDIA has signed more than a dozen players, including many of the usual HPC suspects: Cray, Appro, Microway, Penguin Computing, Colfax International, and James River Technical. NVIDIA has also corralled some regional workstation and server distributors to attain a more global reach. In this category we have CADNetwork (Germany), E4 (Italy), T-Platforms (Russia), Netweb Technologies (India), Viglen (UK). The complete list of partners is on NVIDIA’s Web site.

A bare-bones system — a head node and four GPU-accelerated servers — should run about $50,000. That configuration will deliver around 16 (single-precision) teraflops. But larger systems can scale into the 100s of teraflops territory and run $1 million. In this $50K to $1M price range, the systems are aimed at research groups of varying sizes. A low-end 16-GPU machine, for example, could serve a professor and his or her graduate research team, while a 100-GPU system would most likely be shared by multiple research groups spread across an organization.

This reflects how multi-teraflop CPU clusters are used today, but in the case of GPUs, the price point is an order of magnitude lower. NVIDIA’s goal is to make this capability available for the hundreds of thousands of researchers who could potentially use this level of computing, but who can’t afford a CPU-based system or don’t have the power or floor space to accommodate such a machine.

Software will continue to be the limiting factor, since a lot of important technical computing codes are just now being ported to the GPU. CUDA-enabled packages like NAMD (NAnoscale Molecular Dynamics) and GROMACS (GROningen MAchine for Chemical Simulations) are well into development and will soon make their way into commercial systems. In the near future, OpenCL should offer another avenue for porting higher level GPU computing codes. All of this means system builders will increasingly be able to craft turnkey GPU clusters for specific application segments.

If GPU clusters take off, it would be especially welcome news for NVIDIA. Like many chip manufacturers, the company is struggling through the economic downturn. Its revenues declined 16 percent last year, and it recorded its first net loss in a decade. The good news is that in the GPU computing realm, NVIDIA is the clear market leader. And while the company’s HPC offerings are not a volume business, if Tesla GPUs become the accelerator of choice for millions of researchers, that could change.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire