Simulation Angst

By Michael Feldman

May 7, 2009

The World Technology Evaluation Center (WTEC) recently released a study [big PDF] that assessed international research and development in simulation-based engineering and science (SBE&S). SBE&S encompasses computer modeling and simulation capabilities, which applies to HPC applications in such areas as life science, energy, materials science, manufacturing and scientific research. Intrepid HPCwire reporter John West covers the major findings of the study in this week’s issue.

The WTEC panel obviously did a lot of research for the study (the report was a whopping 426 pages), but the US-centric agenda of the National Science Foundation, who funded the report, came through loud and clear.

The WTEC report starts with this quote by Harry Truman from 1950:

We have come to know that our ability to survive and grow as a nation to a very large degree depends upon our scientific progress. Moreover, it is not enough simply to keep abreast of the rest of the world in scientific matters. We must maintain our leadership.

And for the most part, we did. But in the 21st century, maintaining this leadership is going to be a lot trickier.

In a nutshell, the WTEC report says that America, while still strong in computer simulation technologies, is losing ground to Europe and Asia. According to the authors, countries like Germany, Japan and China are, in many cases, out-investing us in SBE&S technologies. According to the study: “There is abundant evidence and numerous reports documenting that our nation is at risk of losing its competitive edge. Our continued capability as a nation to lead in simulation-based discovery and innovation is key to our ability to compete in the 21st century.”

These conclusions are along the same lines as similar studies, most notably the 2005 National Academies report, Rising Above the Gathering Storm. The WTEC study points to the flattening of the HPC computing landscape as a primary reason US leadership in simulation technology is eroding. In particular, the low cost and accessibility of supercomputing technology makes it possible for nations of fairly modest means to challenge American preeminence in simulation software.

But as I perused the report, I found myself wondering about some of the unstated assumptions of the study. In particular, if the world is flat with regard to supercomputing hardware, surely simulation codes and expertise are just as globally accessible. The authors act as if software and programmers have no way to cross national borders. To be fair, the study does point to some specific instances where, for political reasons, the US Department of Defense is prevented access to certain codes developed elsewhere. But the study doesn’t make a general case of how a national commitment to SBE&S would contribute to US competitiveness.

In a flat world, even the term “US competitiveness” is ambiguous. In a globalized economy, it’s hard to find head-to-head competition at the national level, since most industries rely on worldwide supply chains, employees and infrastructure. There is a reasonable case to made about how investing in SBE&S would help US tech workers, since centers of excellence based on specific technologies can certainly stimulate local economies. But the study never connects the dots.

In some cases there are no dots to connect. Today most businesses that provide SBE&S-related hardware, software and services are transnational organizations. Moreover, the firms that use these technologies — biotech companies, financial services firms, aerospace manufacturers and such — build and sell products for an international marketplace and often have a global footprint themselves.

The WTEC study points to companies like Toyota and Airbus as firms that are committed to simulation engineering excellence. But Toyota is itself heavily invested in the US, including a $100 million research institute in Ann Arbor, Michigan. And Airbus claims it spends more money with US suppliers than in any other country, supporting an estimated 190,000 jobs in 40 states. Likewise, US-based companies like IBM maintain research facilities in Switzerland and Germany to take advantage of local expertise and infrastructure. In that sense, it could be argued that American leadership in foundational simulation software is not nearly as important to US-based businesses as being able to tap into global talent and investments.

Despite the study’s shortcomings, the authors come up with some reasonable suggestions: a strategic commitment to SBE&S, increased funding and more industry-government partnerships. The US should at least be pulling its weight in research and development of these technologies, and public sector areas like defense are always going to require some special attention.

Unfortunately, the us-versus-them bias of the study prevented the WTEC authors from making another important recommendation: the US should engage in and encourage international partnerships to help push SBE&S forward. The study did point out that developing capable simulation/modeling software and expertise is a worldwide problem, given the rapid transition to highly parallel computing architectures. So it seems natural that international cooperation could be a good thing.

The big challenges of the 21st century — climate change, energy, health care, and terrorism — are all global problems whose technical solutions involve simulation software and engineering to one degree or another. At a time when global warming and fossil fuel shortages affect the entire planet, it’s hard to imagine a single country could sustain a competitive advantage if it solved, say, fusion energy. The same goes for discoveries that address problems like disease control or nuclear proliferation.

Truman’s remarks about US science more than 50 years ago came in the Cold War era when it really was us versus them. And back then home-grown technology and engineering could be more easily contained within national borders. But the world we’ve inherited makes the America-must-be-number-one approach a lot more questionable.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire