TeraGrid ’09: Thriving in an Exponentially Changing World

By Bill Bell

July 6, 2009

Before he even took the podium, Ed Seidel was one of the buzz makers at the TeraGrid ’09 conference. The day before his keynote, it was announced that he was stepping in as acting assistant director of the National Science Foundation’s math and physical sciences directorate. For his talk at the conference, however, Seidel focused on the issues and efforts within his home at NSF, the Office of Cyberinfrastructure.

Computational science is “fundamentally changing in very serious ways and on exponential paths,” he said.

We can see those changes across many different disciplines. As an example, he used his own field of astrophysics.

In the early 1970s, “brilliant scientists were doing groundbreaking work” alone or in very small groups. Some of Stephen Hawking’s early work was done alone, based on mere kilobytes of data, and was illustrated with a hand-drawn sketch. About 20 years later, Seidel was part of a team of about 10 working with about 50 megabytes of data — five years after that, 50 gigabytes of data. Today, astrophysicists work on hundreds of terabytes of data, and they work on much more complicated problems that require researchers from a variety of subdisciplines.

Over the past three decades, the amount of data created by astrophysicists’ simulations has increased by 12 orders of magnitude, and “it’s happening everywhere.”

Geophysics problems have followed a similar curve. Atmospheric scientists, hydrodynamics researchers, data experts, economists, sociologists, and civil engineers all come together to understand severe weather like hurricanes and people’s reactions to them. They rely on tools like sensors delivering live data, computational models that couple several aspects of the problem to one another, and fast networks.

These sorts of “grand challenge communities” are intensely dynamic. Not every project requires every member of the team’s expertise nor every tool in the cyberinfrastructure toolbox. What they do require, according to Seidel, is a new way of thinking about computational science.

These communities have massive intellectual and technical capacity, and they drive larger simulations and need to process and make sense of growing amounts of data. Accordingly, they also require solutions to a set of what Seidel called “crises” in high-performance computing.

Despite these “crises,” Seidel remains optimistic. A key theme of his talk was that: “We are getting there. The TeraGrid is a good example of the fact that we are getting there. I believe it is the world’s best environment for advancing computationally oriented science and engineering research.”

“We are transforming science through cyberinfrastructure.”

The first of crisis and response Seidel discussed was of technology. Tomorrow’s leadership class supercomputing systems will have hundreds of thousands of processors, which presents two key challenges. Researchers using these systems to simulate the world around us will have to scale their codes to run on that many processors in order to get the full benefit of the systems. They’ll also have to employ advanced fault-tolerance strategies.

“With millions of components [processors, memory, disks, etc.], something is constantly failing,” he said. Keeping simulations running, even as components that are in use fail, requires gracefully moving the simulations to other components.

Efforts to address both of these are underway on resources throughout the TeraGrid. They’re also part of NSF’s Petascale Computing Resource Allocations program, which is supporting teams as they prepare their codes to run on NCSA’s Blue Waters sustained-petascale computing system.

Second, Seidel described a data and provenance crisis, pointing out that, by some reckonings, we have generated more unique digital data in the last year than we had collected in all prior human history. A cutting-edge simulation of a gamma-ray burst on a sustained-petascale supercomputer might output five petabytes of data. Moving, storing, and keeping proper track of those data would be a tremendous undertaking.

“Growth of data is biggest unsolved problem in cyberinfrastructure, in some ways in science,” he said. “We don’t know how to collect it from multiple communities and correlate it. Our goal is to catalyze a system of science collections that is open, extensive, and evolvable.”

Here, he pointed to the NSF DataNet program, which will fund five data nodes in a national network. They’ll be “not just repositories but community anchors for data-intensive science.” He also pointed to eXtreme Digital, the program that will be the third phase of the TeraGrid project.

Seidel described a crisis in software, as well. There are “millions of lines of code in a single complex application. And when we think about grand challenge communities, we’re connecting codes and modules. Software environments are with us for decades, so we need much more investment here,” Seidel said.

Finally, he discussed a crisis of education. After years of trying to educate students to think computationally, the question remains: How do we develop a workforce that can thrive professionally in this exponentially changing world? NSF is currently supporting a set of CAREER grants for young investigators at American universities who are tackling this issue in inventive ways.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire