The Secret Life of Supercomputers

By Michael Feldman

July 8, 2009

There were a couple of stories floating around the Intertubes in the past week or so that reminded me of how little we know about large classes of HPC applications. That’s not a good thing.

The first story is about the arrest of former Goldman Sachs computer programmer, Sergey Aleynikov, who allegedly made off with proprietary trading software the firm used to execute high volume, low latency automated trading. The news was covered in Bloomberg and elsewhere, and is a compelling tale of espionage in the financial services industry. Here’s the money quote, so to speak, from the Bloomberg report:

The proprietary code lets the firm do “sophisticated, high-speed and high-volume trades on various stock and commodities markets,” prosecutors said in court papers. The trades generate “many millions of dollars” each year.

The second story concerns espionage too — in this case, the more old-fashioned kind. Apparently the National Security Agency (NSA) is planning to construct a $2 billion dollar datacenter in Utah that will eventually consume 65 megawatts to power new supercomputers. The agency’s current facility in Fort Meade, Maryland, is already power-constrained, preventing the NSA from installing any more supers at that site. The Salt Lake City Tribune reported that the new Utah datacenter will be used to support the NSA’s intelligence-gathering mission. The Tribune used congressional budget documents to squeeze a bit more detail from the story:

The supercomputers in the center will be part of the NSA’s signal intelligence program, which seeks to “gain a decisive information advantage for the nation and our allies under all circumstances” according to the documents.

Of course, the speculation is that the NSA is using these supers to perform domestic spying — a program begun under the Bush administration and now being continued under the Obama regime. The Fort Meade machine is a Cray “Black Widow” super, which is reportedly sifting through emails and phone conversations to find out who’s been naughty and nice.

The nexus of these two stories is that secrecy prevents the public from knowing the full breadth of HPC applications. In the case of the government, it’s for national security reasons; for financial institutions, it’s to maintain competitive advantage. But it’s not just the financial industry and government intelligence domains (although these two areas are probably the most discrete in regard to technology transparency). You’ll notice, for example, that the energy industry, commercial biotech companies, and automobile/aerospace manufacturers aren’t giving public tours of their HPC datacenters either.

Even the TOP500 list reflects this secretive nature. The list is quickly becoming an anonymous record of supercomputing, where many of the users are only listed generically (for example, Financial Institution, Government, IT Provider, Semiconductor Company, and so on). This is especially true as you move toward the end of the list, where there are fewer public institutions. On the June 2009 TOP500 list, 78 of the bottom 100 supercomputers are listed anonymously.

By contrast, HPC being performed by national labs, supercomputing centers, and academic institutions is highly publicized, and tends to be very visible on the TOP500 list. These organizations are constantly on the prowl for grants, funding and other sorts of collaboration, so it pays for them to advertise what they’re up to. Plus researchers tend to be a talkative bunch anyway. I suspect this is the reason that the public generally only associates supercomputing with applications like climate modeling and looking for galactic black holes.

What’s the result of all this secrecy? Besides giving the public a skewed view of the industry, it also makes the technology invisible to a larger number of developers. Consider that most HPC apps are still implemented in legacy languages like Fortran and C, while “public” applications for personal computers or the Web are using more modern software frameworks, like Java, .NET, Python, etc. Even though HPC is not a volume industry in terms of software licenses, if more codes were public, you’d probably see a much more rapid development of libraries and tools (which is one reason why CUDA software has developed so quickly). Keeping software in silos makes for a lousy ecosystem.

The other aspect to secrecy is that it encourages the kind of bad behavior that Aleynikov and the US government are being accused of. There’s nothing inherently wrong with protecting state secrets and proprietary IP, but eventually the whole model can become self defeating. Consider this: arguably, two of the biggest catastrophes of this young 21st century are that of US intelligence regarding 9/11 and Iraq and the collapse of the financial industry. Both institutions relied on keeping information siloed to such an extent that even the institutions themselves couldn’t explain the data. And when the secrets are lies, nobody will know until it’s too late.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire