Microsoft Releases New Software Tools for Researchers

By Michael Feldman

July 13, 2009

As scientists increasingly rely on big data to drive their research, a new set of software tools is emerging. Two of these new tools, developed by Microsoft’s External Research division, were launched on Monday at the Microsoft Research Faculty Summit in Redmond, Wash. They include the Project Trident workbench and the Dryad/DryadLINQ programming environment.

Project Trident was originally aimed at oceanographic applications (hence the name). The work began as a collaboration between Microsoft External Research, the University of Washington and the Monterey Bay Aquarium to provide a high-level workflow tool for oceanographers. Oceanography, like many scientific domains today, is being inundated with a deluge of data that researchers are struggling to manage.

Once the proof-of-concept stage for Project Trident was completed, Microsoft realized it could be used as a general-purpose platform for other areas, such as astronomy, environmental science, medicine or essentially any type of research that is dominated by workflow issues. The data is coming from a growing number of inexpensive sensors that collect information in real time as well as an ever-expanding collection of scientific databases being stored on the Internet or in private repositories. In many cases, both data rates and data volumes are growing beyond the capabilities of traditional software environments.

Unlike the commercial world, the science community tends to freely pass its data around. But turning the raw information into useful knowledge often requires weeks, months or even years of software development involving customized scripts and applications. The whole idea behind Trident is to enable workflow applications to be developed by scientists, rather than programmers, by structuring the process into modular steps.

“Why lock your knowledge up into scripts or programs when you could actually write it in a tool that other people stand a chance of reusing,” asks Roger Barga, who is leading Microsoft’s development of Project Trident. According to him, researchers are recognizing that the model of customized workflow development is not sustainable. Even if software maintenance were less expensive, scientists are looking for the kind of speed and flexibility that a code rewrite does not allow.

The Trident workbench is being used today by oceanographers at the University of Washington for seafloor-based research that uses thousands of ocean sensors and by researchers at the Monterey Bay Aquarium Research Institute to study Typhoon intensification.  The workbench is also being employed by astronomers at Johns Hopkins University to support the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) project, which is looking for objects in the solar system that could pose a threat to Earth. In this case the data being ingested comes from an array of 1.4 gigapixels digital cameras that capture images of the night sky.

In a nutshell, the Trident workbench tool provides a visual framework for managing and developing workflows. At startup, the user sees a library of existing workflows and activities (or workflow steps). In the GUI, one can add or delete steps from the pipeline by simply dragging and dropping. The idea is that domain experts with no programming knowledge can go in and mix and match existing workflow components to author new experiments and run them on the fly.

A typical workflow would start with reading in the raw data — data files and/or sensor devices. The next step would be to convert the various data sources into a common format. An analysis pipeline — filtering and conditioning algorithms — would come next. Typically the last step is to produce a visual representation of the result.

It’s not all just shuffling objects around a GUI, however. The individual activities, such as reading the raw data, analyzing it, and creating visualizations have to be developed in the first place, as you would any other piece of software. But once developed, the activities can be bound to any user-generated workflows. According to Barga, their experience has been that once you get more than a dozen or so workflows constructed, the users find they’re no longer writing much new code.

One of the important strengths of Trident is that it can utilize HPC clusters. Scientific analysis at scale often requires a high performance computing platform for reasonable performance. By default Trident assumes a single node execution, but users can schedule a job across multiple cluster nodes by creating a workflow application that communicates with the HPC job scheduler.

As one might have guessed, the assumed clustering environment here is Microsoft’s Windows HPC Server, but Trident does allow you to plug in your own scheduler too. This enables researchers to run on a Linux cluster, which remains a much more common platform today for high performance computing. Barga says plugging into a non-Windows scheduler is just one of the different ways Trident has been designed for extensibility, noting that even the tool’s GUI can be replaced should users wish to have a customized look and feel. One dependency that cannot be jettisoned, however, is the Windows .NET framework. The .NET environment contains the Windows Workflow, which is the foundation of the Trident workbench.

The other tools Microsoft released on Monday — Dryad and DryadLINQ — are aimed at developers rather than end users. Dryad itself is a general-purpose data parallel programming runtime designed to run distributed applications on Windows clusters. The runtime is responsible for scheduling resources, handling hardware and software failures, and distributing data and code across the cluster as needed. DryadLINQ is an abstraction layer that runs LINQ (Language Integrated Query) operations on top of Dryad, the idea being to be able to execute data queries that automatically get parallelized via the Dryad runtime.

Unlike MPI, Dryad is not for latency sensitive computation. It is aimed at applications that can increase data throughput via loosely-coupled parallelization. Microsoft Research itself uses Dryad internally for search engine and machine learning research. Barga says they have scaled such applications up to 3,000 nodes on a Windows HPC Server cluster, noting that some of these jobs run for dozens of hours. “The beauty of the Dryad runtime is that if an individual node drops out or there’s a failure in one of the jobs, Dryad automatically recovers, moving the computation off the failed node and reproducing inputs that node was responsible for,” says Barga.

Microsoft is really offering Trident and Dryad/DryadLINQ as two separate solutions, but with interoperability. Trident includes a pre-defined custom activity that invokes Dryad/DryadLINQ, allowing the programmer to pass it LINQ queries. But the real intention seems to be to encourage users to develop their own Dryad/DryadLINQ components to hook into the Trident workbench or use them in standalone applications.

Trident and Dryad/DryadLINQ will be released under the MSR-LA license (Microsoft Research License Agreement) and, as such, is for non-commercial academic use only. Barga says Microsoft is considering some sort of license arrangement for commercial users, but without any requirement for royalty paybacks. The bottom line here is that Microsoft is not looking to generate revenue directly from these tools, but rather to expand the Windows ecosystem for researchers and encourage use of the Windows HPC Server platform.

Barga couldn’t talk about any future interoperability between these tools and Microsoft’s Azure cloud computing platform, but it’s reasonable to assume that all these technologies are heading toward convergence. “Science is moving to the cloud and we want to make sure that all of the tools that we offer, including things like Dryad and Trident … will work on the cloud for scientists who want to do really big data challenges,” says Barga.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire