IBM Computing on Demand Evolves Toward Cloud Computing Service

By Michael Feldman

August 19, 2009

As IT budgets have gotten squeezed, more customers are looking at cloud computing as a way to avoid up-front capital costs, while getting access to as many CPU cycles as they need. In response, all the big IT firms are scrambling to develop a cloud computing product and services strategy, and IBM is no exception.

IBM has actually enjoyed a bit of head start at this. The company’s Deep Computing on Demand offering was launched back in June 2003, when everyone thought clouds were just fluffy white things in the sky. The original offering allowed HPC customers to rent remote access to supercomputer-type systems maintained by IBM. The initial infrastructure consisted of a Linux cluster of xSeries servers housed at a facility at the company’s Poughkeepsie, New York plant.

One of the first users of the service was GX Technology Corporation, a company that does seismic data imaging for the oil & gas industry. Besides dodging the expense of a cluster build-out, one of the big advantages of the on demand service was that the image processing turnaround was much quicker, since IBM could provision up to a thousand servers at a time, depending upon job size.

In general, the original Deep Computing on Demand service was designed for HPC applications across government, academia and industry. Over the next six years, IBM’s on demand offering evolved into a more general-purpose service, broadening its scope beyond traditional HPC, but keeping its computationally-intensive theme. Today it’s just called Computing on Demand and is run more like a cloud with the ability to create virtual images within individual servers.

David Gelardi, IBM’s vice president of Systems and Technology Group for Worldwide Client Centers, sees their current on demand offering as one of the ways in which a client can take advantage of cloud computing today. “In some sense you could think of Computing on Demand as almost a dress rehearsal for cloud,” he says. “We just didn’t know it.”

Currently, there are six IBM on demand centers strung across the US, Europe and Asia. In most cases customer data is stored locally, so bandwidth and latency dictates that the remote servers not be too remote. Because of that, the centers have tended to migrate to “centers of opportunity.” For example, when the oil & gas industry was booming, IBM maintained a center in Houston. As financial services got hot, they expanded into London and New York. Their newest center is in Japan.

Today the two most active sectors of IBM’s on demand service are the financial services industry and industrial design/automation. In the financial space, the applications that support risk compliance plus the creation and management of new types of financial instruments are the two big drivers right now. In the design space, one of the biggest clients is IBM itself, which periodically rents cycles to do large verification runs on its in-house integrated circuit designs.

The six centers currently house a total of 13,000 processors and 54 terabytes of storage. Customers are offered a choice of hardware: IBM Power CPUs (System p servers), or x86 CPUs (BladeCenter and System x servers) using either Intel Xeon and AMD Opteron processors. On the x86 side, both Linux and Microsoft Windows is supported, while the System p users get their choice of Linux or AIX. IBM-built management software, like the xCAT (Extreme Cluster Administration Toolkit), is layered on top for extra functionality.

At one time, IBM offered remote access to Blue Gene technology, but that’s no longer the case. Gelardi says they couldn’t find a broad enough market for the type of specialized technology and support inherent in a rent-a-Blue-Gene offering. The same goes for the Cell processor. He does, however, see the possibility of incorporating IBM mainframes into the on demand model since these represent fairly dear cycles when customers are getting ready to deploy a mainframe application into production.

As far as pricing goes, there are a number of factors that determine cost, including service commitment, technology requirements, and number of compute cycles. It’s actually quite similar to renting other types of infrastructure, like hotel rooms or cars. If you rent for a day, you get one price, for a week, you get a better deal, and so on. Similarly, you get charged a premium if you rent the compute equivalent of a Ferrari versus a Ford. Customer flexibility related to the Service Level Agreement (SLA) is also a consideration. For example, if a customer needs a 24/7 uptime, that’s going to drive the price up since spare servers have to be set aside to account for the inevitable hardware failures.

Gelardi noted that the $1 per CPU-hour for Sun Microsystems’ now defunct Network.com utility computing service might have sounded good, but was an unworkable business model. At some level, he probably wishes the Sun model would have succeeded since it would have kept prices up for all the players. “If I could get a dollar per CPU-hour, I could pave the roads with gold bullion,” he jokes.

Although the IBM compute service has grown beyond its rent-a-supercomputer roots, it still represents a fairly typical compute utility service. The plan, though, is to evolve into a more complex model, where customers will be offered four different types of cloud infrastructure: compute clouds, development clouds, test clouds, and storage clouds. The current offering will naturally evolve into the compute cloud, but IBM’s intention is to develop purpose-built infrastructure aimed at the other three functions.

IBM is already working on a proof-of-concept project with a large financial institution that is looking to give up to 10,000 programmers the ability to independently develop a database plus application service engine in the cloud. The idea for the developer is to be able to attach their workstation to a virtual machine that represents a much larger system. They will also have the ability to do a refresh, which resets the virtual machine back to its initial state.

Although IBM doesn’t supply hard numbers about the size of its computing on demand business, Gelardi says they have hundreds of clients that are currently active or have been active through the course of the program. When it started out in 2003, he says the service was generating revenue on the order of millions of dollars per year. At this point, he says, that has risen to tens of millions of dollars. “As we start to bring in the other types of clouds — the test clouds, development clouds, storage clouds — we’ll blow through the next level very quickly.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire