IBM Computing on Demand Evolves Toward Cloud Computing Service

By Michael Feldman

August 19, 2009

As IT budgets have gotten squeezed, more customers are looking at cloud computing as a way to avoid up-front capital costs, while getting access to as many CPU cycles as they need. In response, all the big IT firms are scrambling to develop a cloud computing product and services strategy, and IBM is no exception.

IBM has actually enjoyed a bit of head start at this. The company’s Deep Computing on Demand offering was launched back in June 2003, when everyone thought clouds were just fluffy white things in the sky. The original offering allowed HPC customers to rent remote access to supercomputer-type systems maintained by IBM. The initial infrastructure consisted of a Linux cluster of xSeries servers housed at a facility at the company’s Poughkeepsie, New York plant.

One of the first users of the service was GX Technology Corporation, a company that does seismic data imaging for the oil & gas industry. Besides dodging the expense of a cluster build-out, one of the big advantages of the on demand service was that the image processing turnaround was much quicker, since IBM could provision up to a thousand servers at a time, depending upon job size.

In general, the original Deep Computing on Demand service was designed for HPC applications across government, academia and industry. Over the next six years, IBM’s on demand offering evolved into a more general-purpose service, broadening its scope beyond traditional HPC, but keeping its computationally-intensive theme. Today it’s just called Computing on Demand and is run more like a cloud with the ability to create virtual images within individual servers.

David Gelardi, IBM’s vice president of Systems and Technology Group for Worldwide Client Centers, sees their current on demand offering as one of the ways in which a client can take advantage of cloud computing today. “In some sense you could think of Computing on Demand as almost a dress rehearsal for cloud,” he says. “We just didn’t know it.”

Currently, there are six IBM on demand centers strung across the US, Europe and Asia. In most cases customer data is stored locally, so bandwidth and latency dictates that the remote servers not be too remote. Because of that, the centers have tended to migrate to “centers of opportunity.” For example, when the oil & gas industry was booming, IBM maintained a center in Houston. As financial services got hot, they expanded into London and New York. Their newest center is in Japan.

Today the two most active sectors of IBM’s on demand service are the financial services industry and industrial design/automation. In the financial space, the applications that support risk compliance plus the creation and management of new types of financial instruments are the two big drivers right now. In the design space, one of the biggest clients is IBM itself, which periodically rents cycles to do large verification runs on its in-house integrated circuit designs.

The six centers currently house a total of 13,000 processors and 54 terabytes of storage. Customers are offered a choice of hardware: IBM Power CPUs (System p servers), or x86 CPUs (BladeCenter and System x servers) using either Intel Xeon and AMD Opteron processors. On the x86 side, both Linux and Microsoft Windows is supported, while the System p users get their choice of Linux or AIX. IBM-built management software, like the xCAT (Extreme Cluster Administration Toolkit), is layered on top for extra functionality.

At one time, IBM offered remote access to Blue Gene technology, but that’s no longer the case. Gelardi says they couldn’t find a broad enough market for the type of specialized technology and support inherent in a rent-a-Blue-Gene offering. The same goes for the Cell processor. He does, however, see the possibility of incorporating IBM mainframes into the on demand model since these represent fairly dear cycles when customers are getting ready to deploy a mainframe application into production.

As far as pricing goes, there are a number of factors that determine cost, including service commitment, technology requirements, and number of compute cycles. It’s actually quite similar to renting other types of infrastructure, like hotel rooms or cars. If you rent for a day, you get one price, for a week, you get a better deal, and so on. Similarly, you get charged a premium if you rent the compute equivalent of a Ferrari versus a Ford. Customer flexibility related to the Service Level Agreement (SLA) is also a consideration. For example, if a customer needs a 24/7 uptime, that’s going to drive the price up since spare servers have to be set aside to account for the inevitable hardware failures.

Gelardi noted that the $1 per CPU-hour for Sun Microsystems’ now defunct Network.com utility computing service might have sounded good, but was an unworkable business model. At some level, he probably wishes the Sun model would have succeeded since it would have kept prices up for all the players. “If I could get a dollar per CPU-hour, I could pave the roads with gold bullion,” he jokes.

Although the IBM compute service has grown beyond its rent-a-supercomputer roots, it still represents a fairly typical compute utility service. The plan, though, is to evolve into a more complex model, where customers will be offered four different types of cloud infrastructure: compute clouds, development clouds, test clouds, and storage clouds. The current offering will naturally evolve into the compute cloud, but IBM’s intention is to develop purpose-built infrastructure aimed at the other three functions.

IBM is already working on a proof-of-concept project with a large financial institution that is looking to give up to 10,000 programmers the ability to independently develop a database plus application service engine in the cloud. The idea for the developer is to be able to attach their workstation to a virtual machine that represents a much larger system. They will also have the ability to do a refresh, which resets the virtual machine back to its initial state.

Although IBM doesn’t supply hard numbers about the size of its computing on demand business, Gelardi says they have hundreds of clients that are currently active or have been active through the course of the program. When it started out in 2003, he says the service was generating revenue on the order of millions of dollars per year. At this point, he says, that has risen to tens of millions of dollars. “As we start to bring in the other types of clouds — the test clouds, development clouds, storage clouds — we’ll blow through the next level very quickly.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire