With Power Comes Complexity

By John West

September 14, 2009

When rPath CTO Erik Troan speaks during the opening session at this year’s High Performance Computing on Wall Street conference on Monday morning, he’ll be emphasizing something that old school HPC’ers are very familiar with: complexity. Even moderately-sized HPC clusters are a study in complexity: everything — from operating system patches to compilers and job schedulers to an individual user’s shell preferences — interacts with everything else. Getting it all working and hammered into a stable system after the initial installation can take upwards of six months (in the average case; I once had a pair of systems that took nearly two years to stabilize, though) in a process that can seem a lot like playing whack-a-mole without a hammer. Once a system is stable, administrators and center management are understandably loathe to make a change.

And yet change is precisely what is required in today’s large-scale computing environments. When clusters were primarily confined to research environments, whether in national labs or R&D units of large corporations, then it was acceptable to expect the users to adapt to the environment. If a system took a week to stabilize after an upgrade, no one liked it, but users accepted it, not least because there usually wasn’t a lot of discipline in the system change process. There might have been a list of what changed, but in many cases even that list is not made today until after the upgrade is complete and everyone gets together to compare notes.

As HPC continues to be pulled deeper into the back offices of all kinds of companies, the line between “enterprise” computing and “high performance” computing is blurring. Enterprise users expect mature systems management, including detailed planning and management with detailed manifests sufficient to completely rebuild the operating environment at any point in time, whether to rerun a legacy application or to roll back out of an upgrade that had unexpected consequences down the road.

Although old school HPC’ers are familiar with this complexity, they haven’t done much to develop the tools and disciplines to manage it in a controlled fashion. Configuration management databases (CMDBs) are not uncommon in large, production-oriented HPC centers. But CMDBs are frequently de-coupled from implementation, and this means that it is pretty easy to ignore the CM process “just this once” to make a “really important” change, at which point the database is out of synch with reality. Good admins keep notes and backups, but these tend to depend upon individual discipline and are often manual processes with a little cron scheduling thrown in.

Whittling down complexity is rPath’s mission. Before he founded the company, Erik Troan served as Red Hat’s VP of Product Engineering, chief developer for Red Hat Software, and in several other roles. He was responsible for leading development for Red Hat Linux, RPM, and Anaconda, and has co-authored two editions of Linux Application Development. Excellent chops for a guy that’s now leading a company that positions itself to help manage the complexity of the HPC software environment.

rPath is a privately-held company of about 30 people that has been through three rounds of venture funding since its founding in 2005. The company offers a release automation platform (automatic provisioning) that includes version control for everything on a system: firmware, OS, patches, compilers, linkers and applications.

Administrators can use rPath’s tools to document the complete state of a cluster (or many clusters), set up a planned change, deploy that change to all the systems in a cluster, and automatically roll back if it doesn’t go well. Troan identifies RPM and the many front-ends built on top of RPM (yum and so on) as source-level management tools, and distinguishes rPath’s tools from them based on their ability to manage and provision everything from the OS up, including complete virtual machine images if you go for that sort of thing.

When Troan talks on Monday morning, he will emphasize three rules for a scalable approach to software infrastructure management:

  1. Stay application-centric.
  2. Keep versions controlled on everything.
  3. Automated provisioning is key.

Troan says that commercial organizations often mirror the approach to cluster building taken in research environments: start with the hardware and the operating system, and make everything else work out. This can work just fine in an environment where COTS packages don’t dominate, or where you are working with a very mature application that is flexible in terms of its operating environment. But if your application is more finicky, or held together with bailing wire and tape, or you don’t have access to the source, this is a recipe for pain. Sure you can partition up your cluster and deploy different operating systems to support all your various application requirements, but only if you actually know what those requirements are.

The point is to start with the problem the cluster is supposed to solve, figure out what tools you need to solve that problem, and build the environment that supports it. This sounds straightforward, but a key error that can happen is that the application group will do this kind of planning and then not communicate it to the technology team running the acquisition, causing problems in implementation.

Troan’s second key for scalable HPC infrastructure management is to keep track of the version on everything, and don’t make any ad hoc changes. Basically the idea is that organizations need to think of their clusters as a delicately balanced ecosystem where everything is interrelated. Strong version control will allow organizations to track back through a change that breaks something and know exactly where to look for a problem, and will also support forward planning for change.

Up to this point in Troan’s three rules, we only have a process. In fact, we really don’t have anything more than one can get by establishing a strong CM discipline in an organization with a good CMDB and maybe some ITIL practice thrown in for good measure.

Troan says the key for tying it all together is coupling version control and documentation of state with the implementation of change through an automated provisioning system. Changes are rolled forward automatically and can be rolled back as needed to any prior state. The documentation is always complete provided that the tool managing version control is linked to the tool managing implementation deployment, and if administrators always use the system (a problem) for any change, then configuration drift is eliminated as a source of instability in your production systems.

This is a discipline that I currently employ among the desktop systems in my organization, for example, but not on my HPC systems. It seems obvious now that I think about it.

rPath’s technology is seeing adoption in real HPC environments, and Troan says that organizations like the Department of Energy labs, various companies in Europe, and Sony Pictures Imageworks are using rPath tools to manage large-scale compute clusters today.

Troan’s three rules are obviously informed by where he has positioned his company and his career; they are certainly necessary, but they may not be sufficient for the establishment of a sound discipline to tame what are often wild and wooly HPC deployments. Still, I am glad to see this conversation happening at this particular event. The HPC conversation is well advanced on Wall Street, and as the adoption of our technologies there increases, they will need mileposts to help them merge our two worlds together.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire