Lawrence Livermore Builds Stable of Workhorse Clusters

By Michael Feldman

September 23, 2009

After the 1992 moratorium on underground testing of nuclear weapons in the US went into effect, the Department of Energy’s National Nuclear Security Administration’s (NNSA) was tasked to maintain the country’s nuclear weapon deterrent via computing simulations. As a result, Lawrence Livermore National Laboratory (LLNL) and its two sister labs at Los Alamos and Sandia became the recipients of some of the most muscular computing hardware in the world. Today these institutions are at the forefront of supercomputing expertise, both hardware and software.

Because the weapons simulation applications are always looking to achieve higher resolution, higher fidelity, and full-system modeling, there is an ongoing demand for ever-more powerful capability-class supercomputers. Today, Los Alamos houses what is ostensibly the world’s most powerful computer — Roadrunner — which clocks in at over a petaflop. In a couple of years, LLNL is slated to deploy “Sequoia,” a 20-petaflop IBM Blue Gene/Q machine, and a likely contender for the top supercomputer in 2011. Sequoia’s predecessor, “Dawn,” is a 500 teraflop Blue Gene/P machine installed earlier this year at Livermore.

But according to Mike McCoy, who heads Livermore’s Scientific Computing and Communications Department, it’s not all about these elite capability machines. He says 10 to 30 percent of the computational resources at the lab are devoted to capacity systems, that is, commodity HPC Linux clusters. The reason is simple. There is a lot of computing to be done, and time on the expensive capability systems is dear. By necessity a lot of application work has to be developed and tested on these smaller, less expensive machines as a way to contain costs.

There is also quite a bit of unclassified science work performed at the lab in the areas of climate, biology, molecular dynamics, and energy research. Some of this basic science supports the weapons programs, but the remainder is just part of the NNSA’s larger mission of furthering national security. The unclassified work also serves to nurture the lab’s scientists, and without them, there is no weapons program. In any case, the vast majority of this class of computing takes place on vanilla Linux clusters, albeit very large ones.

Today at Livermore, capacity clusters account for 404 teraflops of computing power, while the capability machines deliver 1,324 teraflops. Another 205 teraflops are available in visualization and collaboration systems. The most powerful capability system at the facility is the half-petaflop Dawn, while the largest capacity cluster is Juno, which weighs in at 167 teraflops.

HPC machines at Lawrence Livermore National Laboratory

Livermore has relied on a number of cluster computer vendors over the years. In 2002, the now-defunct Linux Networx installed a the MCR cluster, which delivered a 7.6 teraflops, a performance level that earned it the number three spot on the TOP500 list in June 2003. A more recent vendor is Appro, who won the Peloton contract in 2006 and then the subsequent Tri-Lab Linux Capacity Cluster (TLCC) deal, which served all three NNSA labs.

Today Lawrence Livermore appears to be grooming Dell for some major deployments. Up until last year, the only Dell machines at the lab were sitting on people’s desks. But in November 2008, the company became the cluster partner on the Hyperion project, a testbed system to be used to develop system and application software for HPC. The idea was to provide a platform for developers to build and test codes at scale before they are deployed on larger production systems. That effort has produced some early results including simulating the file system and I/O rates of the future Sequoia system using Hyperion’s InfiniBand and Ethernet SANs.

Last week, Michael Dell met with LLNL officials at Livermore to get a sense of what the NNSA is expecting from its future cluster system. The agency’s goal is to maintain at least a 1:10 performance ratio between capacity systems and capability systems. Today that means you need roughly a 100 teraflop cluster to match up with the purpose-built one-petaflop supers. With Sequoia coming online in 2011, the folks at LLNL are already thinking about clusters in the two-petaflop range. Beyond that the lab see the need for 100-teraflop commodity machines in 2018, in anticipation of capability machines hitting the exaflop mark. That means vendors need to scale today’s commodity clusters by a factor of 10 over the next 9 years.

Recently Dell installed “Coastal,” an 88.5 teraflop system that is being used by the Lawrence Livermore’s National Ignition Facility to help with fusion research. Next year, with Dell’s help, the lab will be more than doubling the performance of the 90 teraflop Hyperion system with “Sierra,” a new cluster that is spec’ed to reach 220 teraflops.

Michael Dell is hoping that’s just the beginning. From his point of view, designing systems pushing the envelope of scalability and technology dovetails nicely with the company’s other big server segments, namely web services infrastructure and cloud computing. For example, the inclusion of SSD technology to increase I/O performance in the Livermore’s Coastal cluster also turned out to be a good solution for Dell servers deployed for a Web search provider in China (presumably Baidu). He sees the demand for these super-sized machines inside and outside of HPC as two sides of the same hyperscale coin. And, he says, the technology transfer travels in both directions. “You always learn from your best customers,” says Dell.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire