NVIDIA Takes GPU Computing to the Next Level

By Michael Feldman

September 29, 2009

GPU Computing 2.0 is upon us. Today at the NVIDIA GPU Technology Conference in San Jose, Calif., company CEO Jen-Hsun Huang unveiled a seriously revamped graphics processor architecture representing the biggest step forward for general-purpose GPU computing since the introduction of CUDA in 2006. The stated goal behind the new architecture is two-fold: to significantly boost GPU computing performance and to expand the application range of the graphics processor.

The new architecture, codenamed “Fermi,” incorporates a number of new features aimed at technical computing, including support for Error Correcting Code (ECC) memory and greatly enhanced double precision (DP) floating point performance. Those additions remove the two major limitations of current GPU architectures for the high performance computing realm, and position the new GPU as a true general-purpose floating point accelerator. Sumit Gupta, senior product manager for NVIDIA’s Tesla GPU Computing Group, characterized the new architecture as “a dramatic step function for GPU computing.” According to him, Fermi will be the basis of all NVIDIA’s GPU offerings (Tesla, GeForce, Quadro, etc.) going forward, although the first products will not hit the streets until sometime next year.

Besides ECC and a big boost in floating point performance, Fermi also more than doubles the number of cores (from 240 to 512), adds L1 and L2 caches, supports the faster GDDR5 memory, and increases memory reach to one terabyte. NVIDIA has also tweaked the hardware to enable greater concurrency and utilization of chip resources. In a nutshell, NVIDIA is making its GPUs a lot more like CPUs, while expanding the floating point capabilities.

First up is the addition of ECC support, a topic we covered earlier this month, (not realizing that NVIDIA was just weeks away from officially announcing it). The impetus behind ECC for GPUs is the same as it was for CPUs: to make sure data integrity is maintained throughout the memory hierarchy so that errant bit flips don’t produce erroneous results. Without this level of reliability, GPU computing would have been relegated to a niche play in supercomputing.

In Fermi, ECC will be supported throughout the architecture. All major internal memories are protected, including the register file and the new L1 and L2 caches. For off-chip DRAM, ECC has been cooked into the memory controller interfaces on the GPU. This entailed a significant engineering effort on NVIDIA’s part, requiring a complete redesign of on-chip memory and the memory controller interface logic. With these enhancements, NVIDIA has achieved the same level of memory protection as a CPU running in a server. Gupta says ECC, which has little application for traditional graphics, will only be enabled for the company’s GPU computing products.

To support this error correction feature, future products will use GDDR5 memory, which is the first graphics memory specification that incorporates error detection. (NVIDIA currently uses GDDR3 in its products, while AMD has already made the switch to GDDR5.) The nice side effect of GDDR5 is that it has more than twice the bandwidth of GDDR3, although the actual performance for products will depend upon the specific memory interface and memory speed. For the Tesla products, it would be reasonable to expect a doubling of memory throughput.

Better yet, since Fermi supports 64-bit addressing, memory reach is now a terabyte. Although it’s not yet practical to place that much DRAM on a GPU card, memory capacities will surely exceed the 4 GB per GPU limit in the current Tesla S1070 and C1060 products. For data-constrained applications, the larger memory capacities will lessen the need for repeated data exchanges between the CPU and the GPU, since more of the data can be kept local to the GPU. This should help boost overall performance for many applications, but especially seismic processing, medical imaging, 3D electromagnetic simulation and image searching.

The addition of L1 and L2 cache is an entirely new feature for GPUs. The caches were added to address the irregular data access problem of many scientific codes. As in CPU caches, the caches are there to reduce data access latency and increase throughput, with the overall goal of keeping the working data as close as possible to the computation. Codes that will see a particular benefit from caching include applications using sparse linear algebra and sparse matrix computations, FEA applications, and ray tracing.

In Fermi, the L1 cache is bundled with shared memory, an internal scratch pad memory that already exists in the current GT200 architecture. But while shared memory is under application control, the L1 cache is managed by the hardware. Fermi provides each 32 core group (or streaming multiprocessor) with 64 KB that is divided between the L1 cache and shared memory. Two configurations are supported: either 48 KB of shared memory and 16 KB L1, or vice versa. The L2 cache is more straightforward. It consists of 768 KB shared across all the GPU cores.

Another big performance boost comes from the pumped up double precision support. Gupta says the GT200 architecture has a 1:8 performance ratio of double precision to single precision, which is why the current Tesla products don’t even manage to top 100 DP peak gigaflops per GPU. The new architecture changes this ratio to 1:2, which represents a more natural arrangement (inasmuch as double precision uses twice the number of bits as single precision). Because NVIDIA has also doubled the total core count, DP performance will enjoy an 8-fold increase. By the time the next Tesla products appear, we should be seeing peak DP floating point performance somewhere between 500 gigaflops to 1 teraflop per GPU.

NVIDIA engineers have also improved floating point accuracy. The previous architecture was IEEE compliant for double precision, but for single precision there were some corner cases where they were not compliant. With Fermi, the latest IEEE 754-2008 floating point standard is now implemented, as well as a fused multiply-add (FMA) instruction to help retain better precision. According to Gupta, that means their new GPUs will be more precise, floating-point-wise, than even x86 CPUs.

The Fermi design adds a number of concurrency features so as to make better use of GPU resources. For example, dual thread scheduling was implemented so that each 32-core streaming multiprocessor can execute two groups of threads simultaneously, in a manner analogous to Intel’s hyper-threading technology for x86 CPUs.

In addition, the GPU’s hardware thread scheduler (HTS) has also been enhanced so that thread context switching is ten times faster than it was before. To take advantage of the quicker switching, the HTS is able to concurrently execute multiple slices of computational work (known in CUDA parlance as “kernels”).

The new capability allows the programmer to offload more of the application to the GPU, since even relatively small pieces of work can be bundled up and shuttled to the GPU en masse without having to worry about the housekeeping and overhead of sending each one separately. And since the HTS takes care of parallelization, more computation can be done in a shorter period of time.

Along these same lines, data transfer has been parallelized. Currently, a GPU calculation can overlap a CPU-GPU data transfer. Fermi provides a second DMA engine so two transfers can be overlapped with a computation. For example, one can simultaneously read in data from the CPU for the next computation while the current computation is executing and the data from the previous result is being written back to the CPU.

On the software side, they’ve made a number of enhancements to support a more fully-featured programming environment. Most importantly, they’re extending the native C CUDA model to include C++. To do this they’ve added hardware support for features like virtual functions and exception handling. By the time the first Fermi products show up in 2010, CUDA will almost certainly have a native C++ compiler capability.

If all of that seems like a lot of smarts for a single chip, it is. NVIDIA says the new architecture will use a 40 nm process technology and encompass 3 billion transistors, which happens to be more than in any of the upcoming Xeon, Opteron, Itanium, or Power7 CPUs. Power consumption for the various Fermi-based products will be on par with the current offerings, but performance per watt will be much improved.

Announcing a new GPU architecture so far out ahead of actual products is a big departure for NVIDIA, and is yet another example of how GPU computing has brought the company closer to the CPU way of doing business. The company is especially interested in bringing in new players, such as manufacturing and big government supercomputing, which have mostly watched on the sidelines during GPU Computing 1.0. NVIDIA also believes Fermi will deepen its GPU computing penetration across all HPC segments — financial services, life sciences, oil & gas, and so on.

What they’re trying to accomplish, says Gupta, is to prepare ISVs and end users so they can start gearing up their software in advance of the actual hardware. From his perspective, “this is part of us becoming an HPC company.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire