Oh, Yeah – The Workstation Is Sexy Again (Just Please Don’t Call It a Personal Supercomputer)

By Addison Snell

October 1, 2009

For over 10 years, from the late 1980s throughout the 1990s, technical workstations were the stunningly sexy starlets of the computing world. Advancements in graphics cards and RISC microprocessors gave engineers and scientists unprecedented performance at their desks, and Silicon Graphics and Sun Microsystems became the twin-sister darlings of Silicon Valley, based on their come-hither designs and, more importantly, the walk-into-a-pole gorgeous applications that ran on them. They were beautiful, but we fell in love with them for the genius they embodied. Covetous engineers passed product catalogs back and forth, leering at the front covers to goggle at screen shots and the back pages to devour the accompanying stats. The resulting market for them was as large as that of the entire adjacent HPC industry.

But by the turn of the century, the megawatt spotlight on the glamorous technical workstation was fading. PCs and so-called “personal” workstations closed the gap in performance while offering lower prices, standard hardware and operating environments, and the resulting ability to run personal productivity applications (like word processing and email) within the same configurations. By the mid 2000s, technical workstations were considered over-the-hill, and not coincidentally, SGI and Sun had lost their bombshell appeal, having turned over the runway to fresh-faced ingenues that stacked up on datasheet measurements but somehow lacked the sassiness and sex appeal we so admired in our fading pin-up models.

Another decade later, the technical workstation is largely forgotten – a fascination from a bygone era still celebrated in the memories of experienced UNIX-heads sprouting long gray hair, as they shake their heads at the times we live in and reminisce about the good old days. To be sure, there have been innovations in graphics and in x86 processors, but the workstation – as it is still sometimes called – isn’t used for work anymore. These personal workstations are glorified PCs that are usually better suited for games than for any serious task. These dolled-up prom queens might be pretty to look at, but we don’t love them, and we never will.

The technical workstations we loved had features that PCs did not. They had multiple 64-bit processors and lots of memory, and they produced graphics effects that made you lose your train of thought every time you looked at the screen. They were dreamboxes. (Sigh.)

We sit back in our reverie, confident that we will never long for another system like that again. And it was with jaded superciliousness that I greeted this summer’s new entry-level HPC products.

First came a new base configuration for the Cray CX-1, the CX-1 LC, which not only lowered the entry price point but also established Windows as a credible technical platform. Then SGI suddenly emerged from its post-merger hangover to launch the SGI Octane III, a product clearly engineered – and named – to make us remember what the company was once capable of. And in a deep bow to the adored queen of the new graphics world, both the CX-1 and the Octane III offer the latest NVIDIA GPUs.

I attended NVIDIA’s GPU Technology Conference in San Jose prepared to see some amazing effects, and I wasn’t disappointed. The fact that they were broadcasting in real time in breathtaking 3D HD stereo was only a baseline jumping-off point for showing off their newest tricks, from photo-realistic ray tracing to an eye-popping augmented reality demo that looked more like magic than technology. Amidst all this eye candy, it is even more amazing that an HPC product would turn everyone’s heads.

Fermi, NVIDIA’s next-generation GPU computing architecture, addresses a punch list of technical shortcomings that had held Tesla back. Fermi offers double-precision performance and ECC memory. It has C++. And NVIDIA also introduced Nexus, an integrated development environment with source-level debugging, immersed in Microsoft Visual Studio. Certainly some hurdles remain (such as overcoming the latency hit inherent in moving a calculation off-chip), but the crowd of paparazzi gathering around GPU computing is growing thicker.

The only blemish on an otherwise awesome launch is that NVIDIA still seems to misunderstand where its HPC opportunities are. The demonstrations and endorsements were substantial, but they tended to meander headily through different product classes and application categories. The target markets stated in NVIDIA’s analyst presentation don’t line up to the benchmarks the company is reporting or the ISVs it is targeting. And NVIDIA’s stated total addressable market figure for 2010 – over $1.1 billion in GPU sales (not system sales, but GPU sales) for HPC applications in finance, energy, academia, government, and other supercomputing – is so ridiculous that it can only be the result of intentional self-delusion.

At the heart of the problem is NVIDIA’s oxymoronic designation for its Tesla line, the “personal supercomputer.” This term seems to go around HPC marketing teams every ten years like a new strain of positioning flu: the Try1Buy1 virus. In 1988 Apollo infected IBM with the concept, and in 1998 Apple introduced a new mutation with the Power Mac G4. Apple must have then sneezed on – guess who – NVIDIA, which launched its own personal supercomputer in 1999 to compete.

Apparently this resilient piece of message coding has a 10-year incubation cycle. NVIDIA has introduced a second-generation personal supercomputer to market, and both SGI and Cray have caught the new product class. Maybe 10 years is how long it takes to forget why it didn’t become an epidemic of success the last time. Those reasons are these, for use now and in all future census years:

  1. People who are looking for a supercomputer want a supercomputer, not something that fits under a chair.
     
  2. People who are looking for an HPC adoption platform don’t think of themselves as supercomputing users. In fact, half the time they don’t even think of themselves as HPC users.
     
  3. If you finally manage to break through the confusion and attract a potential buyer, you encounter an automatic purchasing roadblock. (Accounting: “No, Jim is NOT authorized to buy his own personal supercomputer!”)

To call any of these products a personal supercomputer is to forget how we might have thought of these products back in the days when desktop and deskside systems quickened our pulses. Oh my, the technical workstation is back, and there are reasons to fall in love.

In Cray’s, SGI’s, and NVIDIA’s entry-level HPC products, we have the ability to bundle best-of-class, whiz-bang graphics environments together with HPC clusters that pack enough smarts to do a wide variety of scientific, engineering and analytical tasks. Notwithstanding the excellent endorsement from Oak Ridge National Labs, the knockout opportunity is in the integration of HPC workflow from desktop to low-end cluster.

“It’s not a personal supercomputer. It is a workstation,” says Jean-Marc Talbot, CEO of CAPS Entreprise, whose HMPP Workbench compiles C and Fortran code for CUDA environments. “[NVIDIA] will have to move aggressively to convince the ISV community, and it’s the same for Cray and for SGI. That’s where the opportunity is. We need to look at what we can do to speed ISV adoption.”

If my earlier conversations with ISVs in the HPC community are any indication, getting their interest won’t be a great challenge. Many of them will look to platforms like Tesla, Octane III, and CX-1 as integrated systems that provide a smooth introduction to their products.

Insights like this have already guided Cray to soften up on the “personal supercomputing” talk and to shift the conversation to how Cray is putting the “work” back into workstation. SGI calls it a personal supercomputer, but Octane was an iconic workstation product, and clearly this heritage was on someone’s mind. Meanwhile NVIDIA is meeting one technical challenge after another, but the company hasn’t put its finger on why its messaging hasn’t thoroughly resonated yet with commercial production environments.

I do know why. I still remember the sexy allure and the mind-blowing effects. I remember the smug pride and the jealousy that seethed among the haves and the have-nots. I remember being able to tell who the cool engineers were by the systems they proudly displayed in their cubicles. I remember the smoldering lust, the burning desire, the primal need to possess such an elegant package of intelligence and sex appeal.

I know what we’ve got here. The technical workstation is back. I’m in love.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire