In Fermi’s Wake, a Place for FPGAs?

By Michael Feldman

October 15, 2009

Thanks to the meteoric rise of GPGPU, HPC server vendors are busily trying to figure out how to stuff graphics chips into their systems. NVIDIA’s unveiling of the next-generation Fermi GPU is only going to encourage the GPU computing love-fest.

So how many GPUs can you practically fit in a server? At this point, the answer seems to be eight. Earlier this week Colfax International launched the CXT8000, a 4U server containing eight NVIDIA C1060 Tesla cards. The eight GPUs are paired with eight CPU cores, in the form of two Xeon quad-core processors. The 4U server offers 8 teraflops of single precision floating point performance. All this for a paltry $16,000.

The eight-GPU setup has actually been tried before. There is (or was) an eight-GPU server based on AMD FireStream hardware, which made a brief appearance last year. At SC08 in Austin, Aprius was showcasing its CA8000, a 4U server containing 8 FireStream 9270 cards. The system had a peak rating of 9.6 single precision teraflops. Aprius’s intention was to begin sampling the CA8000 in the first quarter of 2009, although the last time I checked the company’s Web site, there was no further mention of it.

Next year at this time we’re likely to be seeing Fermi GPU-based servers with a lot more power. An eight-GPU Fermi box would probably deliver something in the neighborhood of 15 teraflops single precision and half of that in double precision. Add to that all the other enhancements Fermi brings to the GPGPU party, and you have a whole new wave of cheap FLOPS entering the market at commodity-like prices,

So where does that leave other accelerators, like for example FPGAs? Well, for the near term, FPGA enthusiasts are going to have to fight harder than ever for a spot in the HPC ecosystem. (In truth, it’s been an uphill battle for FPGAs since they first entered the HPC arena.) NVIDIA’s CUDA software ecosystem continues to expand and mature, and with OpenCL on the horizon, we’ll soon have a hardware-neutral GPU computing software environment. There is no equivalent in the FPGA world.

The good news is that FPGAs still offer some unique features that can’t be matched by traditional processors, GPU or otherwise. By their nature, FPGAs are reconfigurable, so the hardware can be optimized for different applications. And since FPGA products are now available as QuickPath or HyperTransport peers, they can share the main bus with the CPU, which greatly speeds up data communications.

FPGAs also are particularly suited for certain classes of algorithms like string matching, cryptography, and fast Fourier transforms. Bioinformatics employs a number of codes that are especially suitable for FPGAs. For example, the Smith-Waterman algorithm, which is used for protein and gene sequence alignment, is basically a string-matching operation that requires a lot of computational power.

There are GPU-based implementations of Smith-Waterman. The most impressive example that I’ve come across shows a 2x to 30x speedup compared to an x86 optimized (read SSE-enabled) implementation. The GPU speedup reflects decent acceleration for this algorithm, but at the low end, it’s nothing to write home about. This study is a couple of years old, so they were using the older NVIDIA G80 architecture and presumably the older x86 architecture as well. It would be interesting to see results on current generation processors.

As expected, FPGAs can offer more substantial acceleration for Smith-Waterman. One study demonstrates speedups of 100x using Xilinx Virtex-4 hardware matched against a 2.2GHz Opteron. On a practical level, that means searches that used to take over three months can now be run in a single day.

A recent application note I received from CHREC, the NSF Center for High-Performance Reconfigurable Computing, showed its new Novo-G supercomputer with even more impressive results for Smith-Waterman. Novo-G is a cluster of 24 Linux servers, each housing four Altera Stratix-III E260 FPGAs. According to the CHREC study, a four-FPGA node ran 2,665 times faster than a single 2.4GHz Opteron core. Doing a little math (and discounting multicore overhead), that translates to a 166X speedup, matching a single FPGA against a quad-core Opteron. Essentially that means Novo-G can match TACC’s half-petaflop Ranger supercomputer on this particular application. Not bad.

Despite that kind of success, I still think FPGAs have a tough road ahead in HPC. FPGA hardware is advancing as rapidly as any other processor technology, but the software ecosystem is still small, and no single solution like CUDA has emerged as a rallying point for developers. As the GPU computing ecosystem starts to expand in earnest over the next few years, it will be interesting to see how the FPGA crowd reacts.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire