Cloud for Academia?

By Adrian Mouat

November 2, 2009

Grid computing was born in academia and was originally designed to support scientific and research computing. In contrast, cloud computing has a business background and is designed to enable the delivery of scalable Web applications.

The BEinGRID project has looked into how Grid is appropriate for business use (and has run several successful business experiments proving this proposition), but what about looking at whether the cloud is useful for academia? Can it be effectively used to run scientific codes, such as those found in climate modelling, fluid dynamics or molecular physics simulations, which have traditionally required the use of supercomputers?

On the face of it, cloud services offer a compelling, simple and relatively cost-effective HPC proposition – just pay for as many CPUs as you want, when you want them. Of course, the truth isn’t quite as simple as that.

Take a look at the Google Cloud offering, App Engine. Users access App Engine through an API, which places quite a lot of restrictions on the code that can be run, including:

  • It must be written either in Python or Java (or use a JVM based interpreter or compiler) – meaning any C or Fortran codes have to be ported.
  • It can’t start any threads (instead the API is used to start a new task).
  • Any single request/task must complete in 30 seconds.
  • It has to stay within quotas on CPU, bandwidth and storage usage.

For full details, see the App Engine documentation. Note that there are different quotas for the free and billed service, and that it is possible to negotiate increases to the quotas.

This doesn’t make scientific computing impossible, but it does put in place a lot of barriers. It would be interesting to see what could be achieved computationally, given the above restrictions, by an academic research group that chose to use App Engine. However, the bottom line is that Google App Engine is more suited to creating dynamic web applications, such as photo and document editing tools, than to processing long-lived scientific computations.

Amazon’s offering, EC2, is a lot more promising. EC2 gives users much more access and control over the system through the use of virtualisation. Users are free to install whatever software and applications they need on EC2.

Users provide “virtual images”, instances of which can be launched at any time and will normally be running in under 10 minutes. By default, only 20 instances (per region) can normally be launched, but users can apply to increase this limit, potentially allowing thousands of instances to be launched. Amazon also supports Hadoop, Condor and OpenMPI for batch/parallel processing. The Data Wrangling blog has some in-depth information on using Amazon to set up an MPI cluster.

For data storage, the Amazon S3 service can be used to store the enormous amounts of data produced by some scientific applications. Access to the data is controlled via Access Control Lists (ACLs) and data is encrypted during transmission using SSL. Users are encouraged to encrypt any sensitive data being stored in S3. It is important to note that Amazon does not guarantee that data will not be lost or compromised (see point 7.2 of the AWS Customer Agreement).

So, it should be fairly easy to get most scientific computing codes running in parallel on EC2. But what’s the performance like? There has been some research and the results are mixed. Comparing a roughly equivalent amount of CPU resources, super-computer clusters are typically much faster at processing scientific codes, largely due to having a better interconnect (see this article by Edward Walker). However, if we include the amount of time it takes to get the code running (i.e., to request and boot the images on EC2 and to wait in the queue on a super-computer cluster), EC2 is likely to be faster in many cases, dependent on the size of the job and scheduling policies (as shown by Ian Foster on his blog). In the future, EC2 may offer an even more competitive service if they upgrade their systems.

I haven’t taken into account Microsoft Azure, which is still in “Community Technology Preview” at the time of writing, but may be interesting for any .NET based scientific codes. The offering is similar to EC2, the main difference being that users must use a supplied Windows 2008 Server VM.

With all the money and time being invested in cloud computing, it will be interesting to the see the effect it has on HPC resource providers over the next decade. Will the emergence of cloud lead to a greater trust in outsourcing compute resources and a direct boost to HPC resource providers? Will there be a level of symbiosis where cloud resources can be built on top of or alongside HPC computing resources? Or will they just be direct competition? One things for sure; the rules of the HPC game are being questioned.

For more information on using cloud platforms for scientific computing, see the HPCcloud User Group.

—–

Reprinted with permission of Grid Voices, hosted by IT-tude.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire