Grid Computing Done Right

By John Barr

November 2, 2009

Writing and implementing high performance computing applications is all about efficiency, parallelism, scalability, cache optimizations and making best use of whatever resources are available — be they multicore processors or application accelerators, such as FPGAs or GPUs. HPC applications have been developed for, and successfully run on, grids for many years now.

HPC on Grid

A good example of a number of different components of HPC applications can be seen in the processing of data from CERN’s Large Hadron Collider (LHC). The LHC is a gigantic scientific instrument (with a circumference of over 26 kilometres), buried underground near Geneva, where beams of subatomic particles — called Hadrons, either protons or lead ions — are accelerated in opposite directions and smashed into each other at 0.999997828 the speed of light. Its goal is to develop an understanding of what happened in the first 10-12 of a second at the start of the universe after the Big Bang, which will in turn confirm the existence of the Higgs boson, help to explain dark matter, dark energy, anti-matter, and perhaps the fundamental nature of matters itself.

Data is collected by a number of “experiments.” each of which is a large and very delicate collection of sensors able to capture the side effects caused by exotic, short lived particles that result from the particle collisions. When accelerated to full speed, the bunches of particles pass each other 40 million times a second, each bunch contains 10^11 particles, resulting in one billion collision events being detected every second. This data is first filtered by a system build from custom ASIC and FPGA devices. It is then processed by a 1,000 processor compute farm, and the filtering is completed by a 3,400 processor farm. After the data has been reduced by a factor of 180,000, it still generates 3,200 terabytes of data a year. And the HPC processing undertaken to reduce the data volume has hardly scratched the surface of what happens next.

Ten major compute sites around the world comprising many tens of thousands of processors (and many smaller facilities) are then put to work to interpret what happened during each “event.” The processing is handled, and the data distribution managed, by the LHC Grid, which is based on grid middleware called gLite that was developed by the major European project, Enabling Grids for E-sciencE (EGEE). High performance is achieved at every stage because the programs have been developed with a detailed knowledge and understanding of the grid, cluster or FPGA that they target.

From Grid to Cloud

Grid computing isn’t dead, but long live cloud computing. As far as early-adopter end users in our 451 ICE program are concerned, cloud computing is now seen very much as the logical endpoint for combined grid, utility, virtualization and automation strategies. Indeed, enterprise grid users see grid, utility and cloud computing as a continuum: cloud computing is grid computing done right; clouds are a flexible pool, whereas grids have a fixed resource pool; clouds provision services, whereas grids are provisioning servers; clouds are business, and grids are science. And so the comparisons go on, but through cloud computing, grids now appear to be at the point of meeting some of their promise.

One obvious way to regard cloud computing is as the new marketing-friendly name for utility computing, sprinkled with a little Internet pixie dust. In many respects, its aspirations match the original aspirations of utility computing — the ability to turn on computing power like a tap and pay on a per-drink basis. “Utility” is a useful metaphor, but it’s ambiguous because IT is simply not as fungible as electrical power, for example. The term never really took off. Grid computing, in the meantime, has been hung up on the pursuit of interoperability and the complexity of standardization. Taking the science out of grids has proved to be fairly intractable for all but high performance computing and specialist application tasks.

Clouds usefully abstract away the complexity of grids and the ambiguity of utility computing, and they have been adopted rapidly and widely. Since then everyone has been desperately trying to work out what cloud computing means and how it differs from utility computing. It doesn’t, really. Cloud computing is utility computing 2.0 with some refinements, principally, that it is delivered in ways we think are very likely to catch on.

But as cloud abstracts away the complexity, it also abstracts away visibility of the detail underlying execution platform. And without a deep understanding of how to optimize for the target platform, high performance computing becomes, well, just computing.

Building Applications

Human readable programs are translated into ones that can be executed on a computer by a program called a compiler. A compiler’s first step is that of lexical analysis, which converts a program into its logical components (i.e., language keywords, operators, numbers and variables). Next, the syntax analysis phase checks that the program complies with the grammar rules of the languages. The final two phases of optimization and code generation are often tightly linked so as to be one and the same thing (although some generic optimizations such as common sub-expression elimination are independent of code generation). The more the compiler knows about the target systems, the more sophisticated the optimizations it can perform, and the higher the performance of the resulting program.

But if a program is running in the cloud, the compiler doesn’t know any detail of the target architecture, and so must make lowest common denominator assumptions such as an x86 system with up to 8 cores. But much higher performance may be achieved by compiling for many more cores, or an MPI-based cluster, or GPU or FPGA.

Such technology has become a hot commodity. Google bought PeakStream, Microsoft bought the assets of Interactive Supercomputing and Intel bought RapidMind and Cilk Arts. So the major IT companies are buying up this parallel processing expertise.

Conclusion

Multicore causes mainstream IT a problem in that most applications will struggle to scale as fast as new multicore systems do, and most programmers are not parallel processing specialists. And this problem is magnified many times over when running HPC applications in the cloud, since even if the programmer and the compilers being used could do a perfect job of optimizing and parallelizing an application, the detail target architecture is unknown.

Is there a solution? In the long term new programming paradigms or languages are required, perhaps with a two-stage compilation process that compiles to an intermediate language but postpones the final optimization and code generation until the target system is known. And no, I don’t think Java is the answer.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire