Workshop Focuses on Use of Manycore and Accelerator-based Computing for Advancing Science

By Jon Bashor

December 16, 2009

Online, at conferences and in theory, manycore processors and the use of accelerators such as GPUs and FPGAs are being viewed as the next big revolution in high performance computing (HPC). If they can live up to the potential, these accelerators could someday transform how computational science is performed, providing much more computing power and energy efficiency.

And, in fact, they are already helping to drive significant scientific research projects — not bundled together in large systems, but rather one server at a time. In early December, a group of astronomers, physicists and HPC experts gathered at the SLAC National Accelerator Laboratory near San Francisco to discuss how GPUs and FPGAs are meeting their unique needs. The three-day workshop was co-organized by Lawrence Berkeley National Laboratory, NERSC, SLAC and Stanford’s Kavli Institute for Particle Astrophysics and Cosmology (KIPAC).

The workshop was organized as a part of an ongoing effort to develop infrastructure for enabling physics and astronomy data problems by utilizing these emerging technologies. More than a year ago under the leadership of Horst Simon of LBNL, John Shalf and Hemant Shukla also of LBNL with Rainer Spurzem of the Chinese Academy of Sciences agreed to establish a working collaboration. The workshop was held on a shoestring budget with help from Tom Abel of KIPAC.

“The participating scientific groups started with challenging problems that required parallel performance to meet real-time requirements,” said co-organizer Shukla. “The effective approach to solving such problems as wavefront sensing and real-time radio imaging is to identify the underlying algorithms for speedups and thereby solve common sets of problems.”

The problems shared a common issue — strong real-time constraints. One application is in solving the challenges in real-time control of adaptive optics systems for high-resolution, ground-based astronomy. The second was in radio telescope arrays in remote locations with only limited power. In the second case, the researchers needed the power of a highly parallel system, but a standard cluster computer on a rack would require more electricity than is available. Using GPU acceleration was just the ticket.

“Instead of starting with the technology and seeing if a problem could be solved, as is often the case, they had a problem and found the technology to solve it,” said co-organizer Shalf.

In both cases, the scientists needed a speedup in processor performance and discovered that new technologies such as GPUs and FPGAs provided the enhancements. Their needs were different than those of many other researchers, who look to HPC centers to run their applications on a larger number of processors rather than just running their applications faster.

“The current direction in supercomputing doesn’t address the needs of researchers who need to solve the same-size problem faster, as opposed to solving a bigger problem at the same speed,” Shalf said.

At the workshop, experts from Asia, Europe and North America got together to share information on solving problems in this area, as well as explore and discuss the scope and challenges of harnessing the full potential of these novel architectures for high performance computing. The workshop drew attendees from academia and industry in China, France, Germany, Japan, Taiwan and the United States. Future experiments such as the Large Synoptic Survey Telescope, Murchison Wide-filed Array, the next-generation SETI and the Allen Telescope Array participated in defining the future goals, as did industry leaders including NVIDIA, AMD, Apple, and Sun Microsystems.

Conference advisor Rainer Spurzem of the Chinese Academy of Sciences cited the “eclectic mix” of attendees as adding to the informative exchange of ideas and experience.

“Although the focus was on physics and astronomy applications, the solutions explored by the participants are likely to have broader impact across science and technology disciplines such as healthcare, energy, aerospace and others,” said workshop co-organizer Hemant Shukla of the Berkeley Lab Physics Division. “These emerging new techniques could lead to new systems and software that use both silicon and electrical power much more efficiently. As we move beyond today’s petascale systems, such efficiency is a necessity.”

Other groups are also meeting to explore how these emerging processor technologies can advance a broad range of scientific applications. The workshop at SLAC was held two weeks after the newly-formed Hybrid Multicore Consortium met for the first time at the SC09 (Supercomputing) conference in Portland, Ore. Co-founded by Berkeley Lab, Los Alamos and Oak Ridge national laboratories, the consortium seeks to address the challenge of re-engineering most of today’s scientific applications to take advantage of the resources provided by future hybrid multicore systems.

“While there is considerable excitement about the potential of multicore systems and harnessing their performance for computational science, reaching this goal will require a tremendous effort by both the application experts and software developers,” said LBNL’s Simon, one of three members of the consortium’s executive committee.

Afterward, Wei Ge of the Chinese Academy of Sciences wrote to the organizers, “It was a very informative and fruitful workshop and thank you very much again for your organization and kind invitation to us.”

And some participants were already looking ahead to future collaborations and building resources and communities.

“I have gained quite a bit of information and impressions throughout and I am in the process of transferring all that to our Sun community,” wrote Ferhat Hatay, who works in Strategic Engagements at Sun Microsystems. “We are most interested in contributing to collaboration efforts with the expertise, interest, and support from Sun as well as from our customer and user base.”

—–

See http://www.lbl.gov/cs/html/manycore.html for the workshop and http://computing.ornl.gov/HMC/index.html for the HMC consortium.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire