NVIDIA Takes Aim at GPU Acceleration for Bioscience Applications

By Michael Feldman

January 14, 2010

NVIDIA has announced the Tesla Bio Workbench, a new program designed to bring together the computational components needed to run GPU-accelerated bioscience applications. The rationale is the same one NVIDIA’s been touting ever since it got into the high performance computing business: take advantage of the superior performance of the GPU in order to lower the entry point for HPC. In this case, they’ve assembled a GPU-centric workbench specifically designed for life science researchers and scientists.

In a nutshell, the Tesla Bio Workbench includes of an array of GPU-capable bioscience codes, a community Web site for downloading the codes and providing a forum for exchanging information, and, of course, recommendations for NVIDIA Tesla GPU -equipped workstations and clusters. The strategy is to educate the biotech community that applications and hardware are here and within the reach of more researchers than ever before.

Over the past couple of years, the application set for computational biology codes that are GPU friendly has grown tremendously, thanks mainly to CUDA ports of the CPU versions of the software. This has produced a large number of popular molecular dynamics and quantum chemistry software packages that can now be run on NVIDIA GPUs. These include such codes as AMBER, GROMACS, NAMD, TeraChem, and VMD, among others. A number of bioinformatics codes like CUDA-SW++ (Smith-Waterman), GPU-HMMER, and MUMmerGPU, are also available. All of these can be downloaded via the Tesla Bio Workbench from their respective owner sites. Many of these can be had free of charge, especially if their use is limited to academic research.

The motivation behind all this is NVIDIA’s recognition that computational biology is one of the lowest hanging fruits for GPU acceleration. Performance increases on the order of 10X to 100X compared to a CPU are fairly typical for these types of codes. This has not gone unnoticed. “The kind of momentum around GPUs in this domain has been perhaps the biggest and most organic that we’ve seen,” says Sumit Gupta, NVIDIA’s senior product manager for the Tesla group. According to him, a lot of biologists have turned to GPUs without any prodding from NVIDIA. The reason for this, he thinks, is that for many small and moderate-sized bio-research projects, the costs and complexity of high performance computing have become a true pain point.

The life sciences sector is already one of the largest markets for high performance computing. In 2008, 29 percent of the supercomputing cycles on TeraGrid were dedicated to bioscience applications, while another 19 percent were running related codes in chemistry and material sciences research. In the commercial realm, HPC demand is being driven by pharmaceutical companies and the emerging genomics industry in their quest for better drugs and treatments. Analyst firm IDC estimates the bioscience vertical is worth well over $1.5 billion to HPC vendors and expanding at a CAGR of 2.6 percent . By the way, that CAGR figure is post-recession; in 2008 IDC was forecasting a growth rate of 9.3 percent. Nevertheless, the prospects for HPC in this sector are significant.

Drug discovery, in particular, is one area where HPC promises to both lower costs and accelerate the pace of research. Today the physical synthesis of drug compounds and the subsequent testing in high-throughput drug screening is both expensive and time consuming, typically representing a five-year R&D cycle. On modern HPC systems, much of this work can be simulated with molecular dynamics and quantum chemistry codes, in essence, replacing expensive labor and material costs with cheap CPU cycles.

Or GPU cycles, as the case may be. NVIDIA’s point with the Tesla Bio Workbench is that GPUs can make computational bioscience a much less expensive proposition than ever before. Because of the data parallel computational capabilities of the modern graphics processor, for many science applications a GPU-equipped workstation can replace a small CPU cluster, while a moderate-sized GPU cluster can stand in for a high-end supercomputer. This lowers up-front hardware costs, energy use over the life of the system, and datacenter space.

For example, a small simulation of the satellite tobacco mosaic virus (STMV) virus using NAMD, a molecular dynamics code for biomolecular simulations, can be performed on a modern 16-CPU cluster based on quad-core x86 technology. But according to NVIDIA’s Gupta, a 4-GPU workstation with a CUDA-version of NAMD will outperform that cluster, and with just a fraction of the power consumption. From the individual researcher’s point of view “anything that keeps the job on the workstation is good,” says Gupta.

Of course, larger simulations require more computational muscle than a workstation can provide. But since these codes tend to scale very nicely, a GPU cluster is the natural path up. “The key to acceptance here is going to be the fact that it’s easy to simulate large molecules,” explains Gupta. “You don’t have to get time on a supercomputer, because that’s too restricting.” For a drug company, that means every researcher can have a GPU workstation for their own small experiments and can share a GPU cluster when they need to run a larger problem.

Commercial products resulting from GPU-powered computational biology have yet to appear. At this point the use of these methods for drug discovery at pharmaceutical companies is sporadic. And given the length of clinical trials that must follow the drug design and discovery process, Gupta thinks we probably won’t begin to hear of success stories for another five years or so. For NVIDIA, the immediate challenge is to convince the biotech industry that these GPU computational tools and platforms are ready now.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire