Cloud Computing Will Usher in a New Era of Science Discovery

By Gilad Shainer, Brian Sparks, Scot Schultz, Eric Lantz, William Liu, Tong Liu, and Goldi Misra

January 26, 2010

Computational science is the field of study concerned with constructing mathematical models and numerical techniques that represent scientific, social scientific or engineering problems and employing these models on computers, or clusters of computers to analyze, explore or solve these models. Numerical simulation enables the study of complex phenomena that would be too expensive or dangerous to study by direct experimentation. The quest for ever-higher levels of detail and realism in such simulations requires enormous computational capacity, and has provided the impetus for breakthroughs in computer algorithms and architectures.

Due to these advances, computational scientists and engineers can now solve large-scale problems that were once thought intractable by creating the related models and simulate them via high performance compute clusters or supercomputers. Simulation is being used as an integral part of the manufacturing, design and decision-making processes, and as a fundamental tool for scientific research. Problems where high performance simulation play a pivotal role include for example weather and climate prediction, nuclear and energy research, simulation and design of vehicles and aircrafts, electronic design automation, astrophysics, quantum mechanics, biology, computational chemistry and more.

Computation is commonly considered the third mode of science, where the previous modes or paradigms were experimentation/observation and theory. In the past, science was performed by observing evidence of natural or social phenomena, recording measurable data related to the observations, and analyzing this information to construct theoretical explanations of how things work. With the introduction of high performance supercomputers, the methods of scientific research could include mathematical models and simulation of phenomenon that are too expensive or beyond our experiment’s reach. With the advent of cloud computing, a fourth mode of science is on the horizon.

The concept of computing “in a cloud” is typically referred as a hosted computational environment (could be local or remote) that can provide elastic compute and storage services for users per demand. Therefore the current usage model of cloud environments is aimed at computational science. But future clouds can serve as environments for distributed science to allow researchers and engineers to share their data with their peers around the globe and allow expensive achieved results to be utilized for more research projects and scientific discoveries.

To allow the shift to the fourth mode of “science discovery,” cloud environments will need not only to provide capability to share the data created by the computational science and the various observations results, but also to be able to provide cost-effective high performance computing capabilities, similar to that of today’s leading supercomputers, in order to be able to rapidly and effectively analyze the data flood. Moreover, an important criteria of clouds need to be fast provisioning of the cloud resources, both compute and storage, in order to service many users, many different analysis and be able to suspend tasks and bring them back to life in a fast manner. Reliability is another concern, and clouds need to be able to be “self healing” clouds where failing components can be replaced by spares or on-demand resources to guarantee constant access and resource availability.

The use of grids for scientific computing has become successful in the fast years and many international projects led to the establishment of worldwide infrastructures available for computational science. The Open Science Grid provides support for data-intensive research for different disciplines such as biology, chemistry, particle physics, and geographic information systems. Enabling Grid for ESciencE (EGEE) is an initiative funded by the European Commission that connects more than 91 institutions in Europe, Asia, and United States of America, to construct the largest multi-science computing grid infrastructure of the world. TeraGrid is an NSF funded project that provides scientists with a large computing infrastructure built on top of resources at nine resource provider partner sites. It is used by 4000 users at over 200 universities that advance research in molecular bioscience, ocean science, earth science, mathematics, neuroscience, design and manufacturing, and other disciplines. While grids can provide a good infrastructure for shared science and data analysis, several issues make the grids problematic to lead the fourth mode of science — limited software flexibility, applications typically need to be pre-packaged, non elasticity and lack of virtualization. Those missing items can be delivered through cloud computing.

Cloud computing addresses many of the aforementioned problems by means of virtualization technologies, which provide the ability to scale up and down the computing infrastructure according to given requirements. By using cloud-based technologies scientists can have easy access to large distributed infrastructures and completely customize their execution environment. Furthermore, effective provisioning can support many more activities and suspend or bring to life activities in an instant. This makes the spectrum of options available to scientists wide enough to cover any specific need for their research.

In many scientific fields of studies, the instruments are extremely expensive, and as such, the data must be shared. With this data explosion and as high performance systems become a commodity infrastructure, the pressure to share scientific data is increasing. That resonates well with the emerging cloud computing trend. While for the moment cloud computing appears to be a cost effective alternative for IT spending, or the shift of enterprise IT centers from capital expense to operational expense, research institutes have started exploring how cloud computing can create the desired compute centralization and an environment for researchers to chare and crunch the flood of data. One example is the new system at the National Energy Research Scientific Computing Center (US), named “Magellan.” While Magellan’s initial target is to provide a tool for computational science in a cloud environment, it can be easily modified to become a center for data processing accessed by many researchers and scientists

Until recently, high performance computing has not been a good candidate for cloud computing due to its requirement for tight integration between server nodes via low-latency interconnects. The performance overhead associated with host virtualization, a prerequisite technology for migrating local applications to the cloud, quickly erodes application scalability and efficiency in an HPC context. The new virtualization solutions such as KVM and XEN aim to solve the performance issue by allowing native performance capabilities from the virtual machines by reducing the virtualization management overhead and by allowing direct access from the virtual machines to the network.

High-speed networking is a critical requirement for affordable high performance computing, as clusters of servers and storage need to be able to communicate as fast as possible between them. A vast majority of the world top 100 supercomputers are using the high-speed InfiniBand networking due to this reason, and the interconnect allows those systems to reach to more than 90 percent efficiency, a critical element for effective for high performance computing in any infrastructure, including clouds. National Energy Research Scientific Computing Center (NERSC, US) “Magellan” system is using InfiniBand as the interconnect to provide the fastest connection between servers and storage in order to allow the maximum gain from the system, highest efficiency and an infrastructure that will be able to analyze data in real time.

Power consumption is another important issue for high performance clouds. As the HPC clouds become bigger, affordability of science discovery will be determined by the ability so the save the costs of the power and cooling. Power management, which is implemented within the CPUs, the interconnect and the system management and scheduling will need to be integrated as a comprehensive solution. Non utilized sections of the clouds need to be powered off or moved into power saving states and the scheduling mechanism will need to incorporate topology awareness.

The HPC Advisory Council HPC|Cloud group is working to investigate the creation and usage models of clouds in HPC. Past activities on smart scheduling mechanisms have been published on the council’s Web site, and future results will include the usage of KVM and XEN, manycore CPUs (such as AMD’s Magny-Cours which includes 12 cores in a single CPU) and cloud management software (such as Platform ISF) will be published throughout 2010. The HPC Advisory Council will continue to investigate the emerging technologies and aspects that will lead us into the fourth mode of science.

Acknowledgments

The authors would like to thank Cydney Stevens for her vision and guidance.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire