Florida State Gives Virtual SMPs a Spin

By Michael Feldman

March 10, 2010

The prospects for virtual SMP technology got another boost last month when Florida State University (FSU) announced it had installed a new HPC system from 3Leaf Systems. The servers are being housed at the university’s HPC facility and will be used across a range of scientific disciplines. It represents the first announced shipment of 3Leaf’s virtual SMP offering.

A relative newcomer to the HPC space, 3Leaf launched its initial server product, called the “Dynamic Data Center Server” (DDC-Server) in November 2009. Using special hardware and software, it enables a set of x86 server nodes to be aggregated into one or more virtual SMP machines. The 3Leaf server shipping today is based on dual-socket Opteron motherboards supplied by Supermicro.

The idea is to provide a platform for applications that require high core count and/or high memory environments, but without the expense of a hard-wired SMP system. And since the aggregation is all done virtually, users can rejigger the SMP configuration on the fly to match different application needs. It’s basically having a cluster and eating it too.

In general, the 3Leaf technology mirrors that of competitor ScaleMP. Unlike ScaleMP though, which does all its virtualization magic in software, 3Leaf has devised a custom ASIC that manages cache coherency at the hardware level. Also unlike ScaleMP, the 3Leaf product is integrated with AMD Opteron-based motherboards. Currently, ScaleMP only supports Intel Xeon-based servers.

This actually turned out to be an important consideration for the university. Since FSU is primarily an AMD shop, sticking with Opteron hardware meant ruling out the ScaleMP solution. The other attraction to 3Leaf was the better promised performance for their ASIC-based cache coherency mechanism.

The new system at FSU is based on six-core Istanbul CPUs, and consists of 12 dual-socket servers connected over QDR InfiniBand. The system sports 576 GB of memory and 6 TB of disk storage. Of the 144 total cores, 138 are available to user apps, with the remainder dedicated to the operating system. Although FSU is not saying how much they paid for the servers, according to 3Leaf, the list price for a system this size is $206 thousand.

On top of the hardware is the resource allocation software. 3Leaf offers different variations of resource management, depending on how you want to slice and dice the servers. The software chosen by FSU was DDC-Pool, which can construct virtual SMP machines at the granularity of the cluster node. Also, with DDC-Pool, reconfiguration requires a system reboot. Obviously, this type of setup implies that it will be used for applications that run for a relatively long time before a reallocation of CPUs and memory is needed.

Since the new system is part of the university’s shared HPC facility, it’s intended to support any FSU researcher. Currently the facility supports about 450. Jim Wilgenbusch, who heads the shared HPC facilty at university, estimates around 25 percent of those users share a need for SMP-type systems with larger memory or larger numbers of CPU cores. To satisfy the demand, they’ve set up a “SMP queue” into which anyone can request a specific number of processors and memory footprint. As needed, the system’s CPUs and RAM are allocated to users as a virtual system and then released back into the resource pool when the application completes.

Wilgenbusch thinks the main application areas that will make good use of the SMP technology are astrophysics, earth and atmospheric science, and imaging applications. FSU recently received a large NIH grant for a cryo-electron microscope, which generates reams of 3-D images for post-processing. Wilgenbusch says that’s just the type of application well-suited to the 3Leaf platform, since it tends to need a much larger memory footprint than can be had on a single physical node.

Theoretically, one application could hog all 138 cores, but most of the user requests they’re getting are for allocations of 44 to 128 cores, with approximately 44 GB per core. As in most shared systems, the bigger the request, the longer the wait for resources.

The 3Leaf system marks a return to a fat node architecture for FSU. During the last decade, the HPC facility there contained a number of large SGI Altix and IBM Power-based SMP computers. These were phased out during the middle of the last decade and were replaced by HPC clusters. “The problem we had with the older systems was that it was very difficult to find a funding path for updating and maintaining that hardware unless it was acquired on a single-purpose special grant,” explains Wilgenbusch.

Today the bulk of the computing infrastructure at the shared HPC facility is a large (398-node) Dell PowerEdge cluster hooked together with DDR InfiniBand. These are used mainly for traditional MPI codes. University researchers also have access to a Condor system for high throughput-type jobs that don’t rely on tight coupling between nodes. The acquisition of the 3Leaf system gives the HPC facility that additional dimension for applications.

Wilgenbusch says their early experience with the 3Leaf product has been very positive. Once researchers get access to a large SMP cache-coherent environment, the first complaint is usually that they would like more of it. In the short term, he expects to expand the current system to 192 cores and around a terabyte of memory.

That sized system would max out the aggregation capability of the current 3Leaf offering. The company is planning to develop an Intel Xeon-based version, based on the future “Sandy Bridge” processors at some point. That technology will scale up to 32 nodes, hundreds of cores, and 64 TB of memory.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire