Florida State Gives Virtual SMPs a Spin

By Michael Feldman

March 10, 2010

The prospects for virtual SMP technology got another boost last month when Florida State University (FSU) announced it had installed a new HPC system from 3Leaf Systems. The servers are being housed at the university’s HPC facility and will be used across a range of scientific disciplines. It represents the first announced shipment of 3Leaf’s virtual SMP offering.

A relative newcomer to the HPC space, 3Leaf launched its initial server product, called the “Dynamic Data Center Server” (DDC-Server) in November 2009. Using special hardware and software, it enables a set of x86 server nodes to be aggregated into one or more virtual SMP machines. The 3Leaf server shipping today is based on dual-socket Opteron motherboards supplied by Supermicro.

The idea is to provide a platform for applications that require high core count and/or high memory environments, but without the expense of a hard-wired SMP system. And since the aggregation is all done virtually, users can rejigger the SMP configuration on the fly to match different application needs. It’s basically having a cluster and eating it too.

In general, the 3Leaf technology mirrors that of competitor ScaleMP. Unlike ScaleMP though, which does all its virtualization magic in software, 3Leaf has devised a custom ASIC that manages cache coherency at the hardware level. Also unlike ScaleMP, the 3Leaf product is integrated with AMD Opteron-based motherboards. Currently, ScaleMP only supports Intel Xeon-based servers.

This actually turned out to be an important consideration for the university. Since FSU is primarily an AMD shop, sticking with Opteron hardware meant ruling out the ScaleMP solution. The other attraction to 3Leaf was the better promised performance for their ASIC-based cache coherency mechanism.

The new system at FSU is based on six-core Istanbul CPUs, and consists of 12 dual-socket servers connected over QDR InfiniBand. The system sports 576 GB of memory and 6 TB of disk storage. Of the 144 total cores, 138 are available to user apps, with the remainder dedicated to the operating system. Although FSU is not saying how much they paid for the servers, according to 3Leaf, the list price for a system this size is $206 thousand.

On top of the hardware is the resource allocation software. 3Leaf offers different variations of resource management, depending on how you want to slice and dice the servers. The software chosen by FSU was DDC-Pool, which can construct virtual SMP machines at the granularity of the cluster node. Also, with DDC-Pool, reconfiguration requires a system reboot. Obviously, this type of setup implies that it will be used for applications that run for a relatively long time before a reallocation of CPUs and memory is needed.

Since the new system is part of the university’s shared HPC facility, it’s intended to support any FSU researcher. Currently the facility supports about 450. Jim Wilgenbusch, who heads the shared HPC facilty at university, estimates around 25 percent of those users share a need for SMP-type systems with larger memory or larger numbers of CPU cores. To satisfy the demand, they’ve set up a “SMP queue” into which anyone can request a specific number of processors and memory footprint. As needed, the system’s CPUs and RAM are allocated to users as a virtual system and then released back into the resource pool when the application completes.

Wilgenbusch thinks the main application areas that will make good use of the SMP technology are astrophysics, earth and atmospheric science, and imaging applications. FSU recently received a large NIH grant for a cryo-electron microscope, which generates reams of 3-D images for post-processing. Wilgenbusch says that’s just the type of application well-suited to the 3Leaf platform, since it tends to need a much larger memory footprint than can be had on a single physical node.

Theoretically, one application could hog all 138 cores, but most of the user requests they’re getting are for allocations of 44 to 128 cores, with approximately 44 GB per core. As in most shared systems, the bigger the request, the longer the wait for resources.

The 3Leaf system marks a return to a fat node architecture for FSU. During the last decade, the HPC facility there contained a number of large SGI Altix and IBM Power-based SMP computers. These were phased out during the middle of the last decade and were replaced by HPC clusters. “The problem we had with the older systems was that it was very difficult to find a funding path for updating and maintaining that hardware unless it was acquired on a single-purpose special grant,” explains Wilgenbusch.

Today the bulk of the computing infrastructure at the shared HPC facility is a large (398-node) Dell PowerEdge cluster hooked together with DDR InfiniBand. These are used mainly for traditional MPI codes. University researchers also have access to a Condor system for high throughput-type jobs that don’t rely on tight coupling between nodes. The acquisition of the 3Leaf system gives the HPC facility that additional dimension for applications.

Wilgenbusch says their early experience with the 3Leaf product has been very positive. Once researchers get access to a large SMP cache-coherent environment, the first complaint is usually that they would like more of it. In the short term, he expects to expand the current system to 192 cores and around a terabyte of memory.

That sized system would max out the aggregation capability of the current 3Leaf offering. The company is planning to develop an Intel Xeon-based version, based on the future “Sandy Bridge” processors at some point. That technology will scale up to 32 nodes, hundreds of cores, and 64 TB of memory.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire