Chipmakers Look to Rock High-End Server Biz

By Michael Feldman

April 1, 2010

The x86 CPU festivities are over for now, but the party’s just getting started. The debut of the latest Intel Xeon and AMD Opteron processors over the last few weeks marks something of a turning point for server makers. For one thing, the introduction of Intel’s 6-core Westmere EP and 8-core Nehalem EX CPUs, and AMD’s 12-core Magny-Cours processor marks the beginning of the end of the quad-core era. Given that, HPC servers with fewer than double-digit core counts will soon be the exception rather than the rule.

AMD and Intel are attacking the high-server space somewhat differently, though. With Westmere EP (now the Xeon 5600), Intel is continuing its traditional 2P server business. But with Nehalem EX (now the Xeon 7500), Intel is charting new territory — big shared memory SMP machines. Intel also introduced the Xeon 6500, a 2P-only variant of Nehalem EX, ostensibly aimed at the HPC market. Meanwhile AMD has consolidated its performance-oriented 2P and 4P products into a single Opteron 6000 product line, starting with Magny-Cours (now the Opteron 6100).

From a price-performance perspective AMD has a good story. With the 6100 Opterons, AMD will go head-to-head with the 2P 5600 Xeons, which have faster cores, but fewer of them. The mid-range Opteron 6174, which sports 12 cores and runs at 2.2 GHz, costs $1,165 in quantity. A Xeon with comparable performance is the 6-core X5680, which is clocked at 3.33 GHz and costs $1664. Although the individual Xeon cores run faster, for many types of parallel workloads, the additional six cores on the Opteron will make up the difference, and then some. The fact that the Intel architecture implements HyperThreading, which handles two threads per core, only boosts performance by 10 to 20 percent. And in some cases, such as Linpack, it doesn’t help at all. Since the 6100 Opterons have four channels of memory and support up to 12 DIMM slots per socket, compared to three channels and nine DIMMs for the Xeon 5600s, the AMD CPUs have an additional advantage on memory-loving apps.

The 6100 Opterons will also go up against the 6500 Xeons in the 2P arena, as well as the 7500 Xeons in the 4P space. Here the Xeons go up to eight cores, the memory channel differential has been equalized at four apiece, and the memory capacity advantage is now with Intel at 16 DIMMs per socket. But the EX-class parts are even more expensive than Xeon 5600 chips. For example, the 8-core 6500 and 7500 products cost between $2,461 and $3,692, which is more than two and three times the price, respectively, of the Opteron 6174 mentioned above. Even the least expensive 6-core EX, which is the 1.86 GHz Xeon x7530, costs $200 more than the 6174.

The bottom line is that the new Magny-Cours processors look like a very competitive solution for 2P and 4P servers. But the 4P story is particularly interesting. AMD is pushing this 6000 series as a platform that does away with the “4P tax.” The tax refers to the traditional premium vendors charged for CPUs and chipsets that support 4-socket servers. Since the 6000 hardware can be used in both 2P and 4P boxes, you can actually save money by consolidating dual-socket servers (as long as you don’t need to spread out the processors over more boxes to get at more I/O). “The only reason 4P processors have been priced like they have is because there’s a guy in the business who owns a large chunk of the market and has been pricing that way for 20 years,” says John Fruehe, who heads AMD’s Product Marketing of the Server and Workstation Division. “It’s more tradition than technology that has forced that price.”

That “guy,” that Fruehe is referring to is, of course, Intel. But prior to Magny-Cours, AMD also priced its 4P/8P Opteron 8000 CPUs at a premium in relation to its 2P Opteron 2000 parts. But according to him, they eventually came to the conclusion that the demand for 4P servers was being inhibited by this pricing model. In fact, according to Fruehe, the quad-socket Opteron-based supercomputers on the TOP500 list came about because AMD gave the system vendors a nice volume discount on Opteron 8000 CPUs. “Generally speaking those were deals where an 8000 processor was priced like a 2000,” he told me. “Suddenly the economics made sense.”

Although he wouldn’t point to any specific systems, the half-petaflop “Ranger” Sun Constellation cluster at TACC, which uses quad-socket Opteron-based blades, almost certainly fits in this category. Fruehe maintains AMD still turned a profit on these supercomputer deals, but it gave them the idea that it could move a lot more product by pricing 4P parts like 2P parts. They believe that this strategy will unleash this market in HPC and across enterprise computing.

On the other hand, AMD has decided leave the 8P (and above), at least for the time being. At 60K or so processors per year, the company has calculated this is too small a market to give special consideration to. One might ask, though: If the 4P servers are such a good idea, why not 8P, 16P and so on? As you keep adding processors, or cores for that matter, memory bandwidth and capacity become the limiting factor. As AMD and Intel keep pouring on the cores, they’re forced to rebalance the memory subsystem.

The idea behind the new Xeon 7500 line is to max out both compute and memory in a familiar x86 package. As of this week, OEMs can build 8-socket commodity boxes with 1 TB of memory. With this approach, not only does Intel think it can edge out proprietary RISC CPUs in SMP servers used for mission-critical computing, it also believes it can grow the SMP market overall.

According to David Kanter at Real World Technologies, that might indeed come to pass. Although in the past there were multiple reasons that 8P servers represented a specialty market, a confluence of commodity technologies, including the new Xeons themselves, are changing the economics. In a recent article, Kanter writes:

The primary barriers to adoption for large x86 servers are software, maturity and cost/benefit. Scalable applications that would benefit from 8S servers are not common. Some classic examples include I/O heavy workloads like ERP, transactional or analytic databases and also select HPC workloads that favor shared memory rather than message passing. More recently, server consolidation using virtualization has emerged as an important workload. In 2010, there are simply more scalable workloads than were previously available.

Kanter goes on to analyze how the different pieces of the enterprise ecosystem are evolving, and how they could favor a shift to commodity 8P servers. For now, AMD seems content to play it conservative and let Intel test the SMP waters. If successful, perhaps the junior member of the x86 franchise will jump in after Intel has built the market. In the meantime, AMD is focused on rebuilding its server mojo in the 2P and 4P sweet spots. Magny-Cours looks like a fine start.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire