The Week in Review – 04/08/2010

By Tiffany Trader

April 8, 2010

Here is a collection of highlights from this week’s news stream as reported by HPCwire.

Supermicro Delivers Platinum Level Servers

Tokyo Institute of Technology Selected as Japan’s First CUDA Center of Excellence

Criterion HPS Unveils the Phantom Extreme Featuring Intel Xeon 5600 Processors

Woodward Taps IBM High Performance Cloud Services to Simulate Aircraft Component Design

GridCentric Announces Copper Cluster Management Software

NVIDIA Quadro GPUs Are Certified for AutoCAD

NCAR Orders Cray XT5 Supercomputer

RenderStream Announces Its VDAC 8-16 GPU Systems

Fixstars Releases ‘The OpenCL Programming Book’

Lomonosov Supercomputer Tops New Russian List of Most Powerful HPC Systems

AccelerEyes Upgrades Jacket Software for GPU Computing

New Computer Cluster Ups the Ante for Notre Dame Research

Xilinx Helps University of Regensburg Launch Most Power-Efficient Supercomputer

Pittsburgh Supercomputing Center Accelerates Scientific Research with SGI Altix UV

Software Design Technique Allows Programs to Run Faster

New AMAX Solutions Powered by NVIDIA Tesla 20-Series GPU

National Petascale Computing Facility Reaches Substantial Completion

Netezza TwinFin Appliance Used for Data-Intensive Computing Applications at PNNL

Memristor Technology Holds Intriguing Promise

HP Labs this week announced advances in memristor technology that could fundamentally change the design of computing. Memristors could be the key that enables computers to handle the ongoing information explosion, where data from a slew of devices, both explicit and embedded, threatens to overwhelm our current computing limits.

So what is a memristor? According to the HP Labs announcement, it’s “a resistor with memory that represents the fourth basic circuit.”

If you’re familiar with electronics, you will recognize the language. The trinity of fundamental components encompasses the resistor, the capacitor, and the inductor. In 1971, a University of California, Berkeley engineer, Leon Chua, predicted that there should be a fourth element: a memory resistor, or memristor. However, when memristors were first theorized 40 years ago, they were too big to be practical.

It was not until two years ago, in 2008, that researchers from HP Labs rediscovered Chu’s earlier work. With the reduction of transistor sizes, even more capabilities of the memristor were realized due to the way properties behave at nanoscale.

What makes the memristor different from other circuits is that when the voltage is turned off, it remembers its most recent resistance, and it retains this memory indefinitely until the voltage is turned on again. It would take many more paragraphs for a full explanation, but if you are interested, I suggest this easy-to-understand primer at IEEE Spectrum Web site.

One of the advantages of memristors is that they require less energy to operate, and are already being considered as a replacement to transistor-based flash memory.

Researchers predict that in five years, such chips, when stacked together, could be used to create handheld devices that offer ten times greater embedded memory than exists today, and could also be used to power supercomputers for digital rendering and genomic research applications at far greater speeds than Moore’s Law suggests is possible.

Memristors work more like human brains. In fact, Leon Chua explained that our “brains are made of memristors,” referring to the function of biological synapses.

And according to R. Stanley Williams, senior fellow and director of Information and Quantum Systems Lab at HP:

Memristive devices could change the standard paradigm of computing by enabling calculations to be performed in the chips where data is stored rather than in a specialized central processing unit. Thus, we anticipate the ability to make more compact and power-efficient computing systems well into the future, even after it is no longer possible to make transistors smaller via the traditional Moore’s Law approach.

The promises this technology offers sound almost to good to be true. If even half of what is promised holds true, than this will go down in history as one of the great breakthroughs in computer technology.

48-Core Intel Processor for Educational Purposes Only

Intel announced plans to ship “limited quantities” of computers with an experimental 48-core processor to researchers by the middle of the year. The 48-core processors will be shipped mainly to academic institutions, an Intel rep said during an event in New York on Wednesday. And while the chip will probably not become commercially available, certain features may make their way into future products.

PCWorld reported:

The 48-core chip operates at about the clock speed of Atom-based chips, said Christopher Anderson, an engineer with Intel Labs. Intel’s latest Atom chips are power-efficient, are targeted at netbooks and small desktops, and run at clock speeds between 1.66GHz and 1.83GHz. The 48-core processor, built on a mesh architecture, could lead to a massive performance boost when all the chips communicate with each other, Anderson said.

The new processor reportedly has a power draw between 25-125 watts, and cores can be powered off to save energy or reduce clock speed. The chip touts better on-die power management capabilities than current multicore chips and comes with power-management software to help lower energy consumption depending on performance requirements.

During the Wednesday event, researchers demonstrated the processor’s advanced power management features. While running a financial application, sets of cores were deactivated and the power consumption went from 74 watts to 25 watts in under a second.

The new 48-core chip is based on the 80-core Teraflop prototype created in 2007 by Intel’s Tera-scale Computing Research Program. And that chip is a runner-up to the 48-core “Single-chip Cloud Computer” announced in December 2009, also a product of the Tera-scale Computing Research Program.

Those processors, however, were only prototypes and were never released into the wild. However, the 48-core chips announced this week are almost ready to leave the research nest, and will be released if not into the fierce corporate jungles at least into the relatively tamer academic habitat.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire