Drug Discovery and Development in the Cloud

By Bruce Maches

May 21, 2010

I hope that all of you have found the information in my blog so far to be of use to you out there. I have received a comment or two regarding potential approaches in dealing with public cloud validation and will provide an update on that topic in a future entry.

So far we have covered some basic facts on the life sciences companies and the regulatory environment they must exist in. I also explored some of the validation issues around using infrastructure related cloud technologies. In this entry I will start to guide you through the basic steps of drug discovery and development at a high level and point out areas where cloud computing can be leverage to facilitate the drug R&D process, reduce costs, and speed time to market. There is obviously a very broad topic and there is no way to effectively cover this subject in just one blog entry so this theme will be the core of the next several posts.

The pharmaceutical R&D process is a long and arduous procedure lasting up to 10 years or longer. It is also tremendously expensive with some new medications costing up to a billion to get from concept to market. There are a variety of factors that impact the cost and duration of the development effort. A few examples are: if a drug is a new one or a different indication (use) for an existing one, what therapeutic area it is targeted for (cancer, diabetes, etc), and what pathway or disease mechanism is the drug addressing. Given all of these factors, the drug development process can be very risky with many potential new drugs never making it to market after consuming hundreds of millions of dollars in research and development efforts. Industry figures vary but on average only 1 compound out of 5,000 or more make it from concept/discovery through development to the market place.

In layman’s terms, the drug development process can be broken into the following high-level activities:

  • Understanding the targeted disease mechanism within the body.
  • Finding a compound that will disrupt or modify that mechanism, initial FDA filing (patent clock is now ticking!).
  • Drug formulation, toxicity studies, and animal safety studies.
  • Initial human testing, further development work, dosing studies.
  • Large scale clinical testing for effectiveness and side effects.
  • Applying to the FDA for market approval.
  • Post approval monitoring.

Many of the applications used to support these pieces of the R&D process can be very compute and storage intensive making them great candidates for moving into the cloud. Given the nature of the drug development process, requirements for compute and storage resources can vary widely with huge peaks in demand as individual experiments or protocols are executed. This makes a strong case for cloud computing as the cost and time necessary to acquire and deploy these types of systems is simply prohibitive for many life science firms. Small companies clearly do not have the budget or resources available to provision these resources internally, and larger firms are dealing with on-going budget constraints with their R&D expenditures. Cloud computing is well suited for ‘bursty’ types of applications as the resources required can be provisioned on demand and at a much lower cost, reducing capital and operational expenses. Also, using cloud significantly cuts the time required to provision and qualify these resources, allowing life science companies to bring their products to market more quickly.

For this post I will concentrate on the up front set of activities around discovery and screening of new compounds and provide some examples of the different aspects of life sciences research that would benefit from the use of cloud computing.

A very commonly used technique in the biotech field is genomic sequencing, which is an extremely data and computationally intensive process. The technology involves looking for specific amino acid sequences in proteins or DNA samples. The amount of data generated is immense with many experimental runs producing gigabytes of data. All of this data has to be managed, stored and made available for follow on research and analysis. One of the applications used in this field is a piece of software called Basic Local Alignment Search Tool, or BLAST. This tool compares amino acid patterns in the sample being analyzed to a library of nucleotides looking for matches to certain sequences. This type of application is well suited to run in the cloud utilizing CPU and storage resources and then bring the results back to the researcher for further study. Tools such as Amazon’s Elastic Cloud Computing and Simple Storage Service (S3) are prime examples of offerings in this area. In addition, Amazon, along with other vendors, maintains copies of many of the publicly-available data sets on genomic and sequence data and makes them available to their clients as part of their overall cloud environment.

Another promising advance in the drug research process is what is called ‘in silico’ or virtual screening. The promise of virtual screening is that it will allow researchers to greatly increase the pace of finding new potential compounds while reducing costs for lab work and clinical trials. The screening process involves using an automated tool to test thousands of compounds for specific activity, either the inhibition or stimulation of a biochemical or biological mechanism. Running these tests requires the preparation of large numbers of assay plates each with hundreds or thousands of tiny wells. Compounds to be tested are placed in the wells using a pipette mechanism, processed by robotic labs and the corresponding reaction recorded. Using this high throughput technique allows researchers to screen thousands to millions of compounds but it can be costly and time consuming. Virtual screening provides the ability to model the desired reaction using tools such as the protein docking algorithm EADock greatly reducing the number of compound combinations needed to be tested. Leveraging cloud resources to perform ‘in silico’ testing will also cut costs and speed time to market.

Other potential applications for cloud computing include research areas such as protein docking simulations, data mining, and molecular modeling. I will reserve those areas for a future entry.

IT organizations supporting life science R&D functions should work towards creating a service based model for how they provide the resources required for these computational and storage thirsty applications. By understanding the underlying cost models and providing clear standards on how/when/where cloud infrastructure will be deployed, the IT group can better be able to properly manage and secure cloud based resources.

Continued advances in the field of drug discovery will exponentially increase the amount of data generated during the discovery process. IT organizations or vendors that can supply the needed cloud based infrastructure services in a secure and reliable manner will certainly do well in this space. Cloud computing also provides significant flexibility to the researcher as they are now free to explore avenues of research that would not have been feasible before the advent of cloud computing.

Cloud computing is certainly expanding its footprint in the life sciences community. The speed, efficiency and cost effectiveness have made cloud computing an indispensible tool for researchers, allowing them to focus on the ‘what’ of science and not the ‘how.’ Having the resources to do better research at this phase of the drug development process will also reduce time and expense in the later phases. My next post will expand further on the challenges and opportunities in the discovery phase of the pharmaceutical research process.

I would love to hear from you if you have any questions or comments. Feel free to contact me at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire