Palm Trees, HPC and Virtualization

By Wolfgang Gentzsch

May 21, 2010

We were lounging in the paradise-like ambience of the beautiful conference hotel in Hammamet, Tunisia, earlier this week, under a verdant canopy of palm trees near the beach — not a cloud to be seen. The AICCSA International Conference on Computer Systems and Applications was in full swing, where Dr. Mazin Yousif just presented the keynote on cloud computing.

Shortly after Mazin joined Intel in 2000 to work on InfiniBand, I remember, we worked together on self-adaptable grid architecture. He then got into HPC when he was the chair of the Management Working Group (MgtWG) of the InfiniBand Trade Association (IBTA) which defined the management architecture for the InfiniBand Architecture (IBA). For many of the TOP500 HPC systems today, InfiniBand is the underlying interconnect technology, optimized for high-bandwidth low-latency communication.

Through InfiniBand, HPC applications, after establishing the interconnect channel, have direct access to the hardware, bypassing the operating system and the device drivers, reducing latency to a few hundred nanoseconds. (Ethernet, on the other hand, where communication moves through the TCP transport layer, IP network layer, link layer and physical layer, is an order of magnitude slower). I found that Mazin, equipped with this expertise, was the ideal person to answer my question about how virtualization in cloud computing really affects the performance of our HPC applications. The following is the result of our conversation HPC and virtualization — under the palms.

Wolfgang Gentzsch: We hear a lot about the additional overhead caused by virtualization, these days. How does virtualization really affect the performance of HPC applications?

Mazin Yousif: To answer this question, we first should look at the role of the VMM (the virtual machine monitor, also called hypervisor). The VMM sits directly on top of the hardware, abstracting all the hardware resources into virtual resources that get aggregated and launched as Virtual Machines (VMs, the containers that run the whole software stack). Usually, the VMM also hosts the device drivers for accessing I/O resources, causing extra overhead for I/O requests.

Gentzsch: Does this mean that the performance of mainly compute-intensive applications wouldn’t be affected by the virtualization?

Yousif: Yes, if compute-intensive applications run completely within the VM with very limited enters to and exits from the VMM, the impact on the overall performance is very minimal.

Gentzsch: … and I/O-intensive applications?

Yousif: There, the overhead is going to be noticeable because all I/O requests inside the VM cause jumps to the VMM, where the I/O device drivers are accessed, and enabling access to the physical I/O resource. This usually causes an extra overhead of a few microseconds. In a more realistic HPC scenario with a mix of compute- and I/O-intensive operations, the amount of overhead is certainly somewhere in-between.

Gentzsch: Could I avoid this overhead at all?

Yousif: May be not completely, but in principle, yes. First, VM vendors could further optimize the VMM, for example by reducing the critical path for an I/O operation within the VMM code. Second, instead of going through the VMM, an I/O device could be directly assigned to a VM which would eliminate the overhead caused by the VMM. This can be achieved by configuring the VMM, resulting in a much better I/O performance. The disadvantage however is that now you need an I/O device for every VM, instead of sharing that device among several VMs, as is usual.

Gentzsch: … but isn’t it better to optimize the rate of completing HPC transactions, rather than focusing on latency alone?

Yousif: Indeed. I see rate as more important than latency alone since rate involves both bandwidth and latency (=BW/latency). Virtualization not only impacts latency, but also impacts bandwidth as well. As before, in a mainly compute-intensive workload that fits in the allocated VM memory, rate will not see any depreciation compared to running the same workload on physical resources. In a mixed-traffic workload, relying on an assigned I/O device helps considerably here.

Gentzsch: When you assign a number of VMs to run an HPC workload, would it be better to keep the environment as is for the duration of the run or should it be adapted to track workload resources’ requirements changes?

Yousif: I see it as necessary to adapt the number and configuration of VMs based on the workload’s resources requirements, as well as the service-level agreements the owner of the workload signed with the cloud provider. To track workload changes, the VMM includes provisions to scale resources assigned to a VM up or down based on that VM’s resource needs. If the elasticity provided by the VMM is not sufficient, then other capabilities such as VMware’s Distributed Resource Scheduling along with VMotion can do the trick.

Gentzsch: So what would I have to do, as an HPC user?

Yousif: If you have a feel about the mix of compute versus I/O intensity in your HPC application, you can decide whether to assign an I/O device directly to a VM or not. If, for example, your working set fits completely into the main memory allocated to a VM, there is obviously no I/O, no page faults, no disc swaps, and thus no overhead.

Gentzsch: But that means that I have to have the ability to configure my VMM. I understand that this can be done in my private cloud, but how would I do this in IBM’s public cloud, for example?

Yousif: Today you can’t. Public cloud service providers currently do not allow HPC end-users to decide whether to assign an I/O device per VM or to share it among several VMs. If there is a real need for this, the HPC community should request this feature from the public cloud service providers to enable HPC in the public clouds.

Gentzsch: So what would be your conclusion and recommendation?

Yousif: I do not see major obstacles running HPC workloads in virtualized environments as there are ways to mitigate the overhead incurred through the VMM. But to cater further to the HPC community, we urge the cloud providers to incorporate running IBA in a virtualized environment in their cloud deployments, which could be one of the best choices for the HPC community as, first, IBA is much easier to virtualize than other I/O technologies, and second, at the same time it offers much better performance than other I/O technologies. Cloud providers currently do not offer IBA support in their cloud deployments.

Addendum on Virtualization

When I checked the dictionary to learn the meaning of virtual, here is what I found, “Vir•tu•al (adjective): existing in essence or effect, though not in actual fact.” Now, virtual systems are systems that: (i) incorporate hardware-level abstraction of physical resources including processors, memory, chipset, I/O devices and others ; and (ii) encapsulate all OS & application state. This is done through the VMM virtualization software that: (i) provides extra level of indirection and decouples hardware & OS; (ii) multiplexes physical hardware across multiple Guest VMs; (iii) provides better strong isolation between VMs; and (iv) manages physical resources and improves utilization.

Virtualization provides a great deal of benefits including, but not limited to, (i) considerably increasing utilization from <15 percent to much higher numbers that can reach 90 percent; (ii) through isolation, it allows to run multiple VMs on a single physical host, and any software malware or crashes in one VM do not affect other VMs; (iii) through encapsulation, it is possible to have the entire VM (including OS, applications, data, memory and device state) as a file that will allow us to, for example, take snapshots, clones, backup, capture a VM state on the fly and restore to point-in-time; (iv) reduce total cost of ownership; and many more.

In terms of uses, examples include test and development; server consolidation and containment; and enterprise virtual desktops.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire