Cray Unveils “Baker” Supercomputer

By Michael Feldman

May 25, 2010

Supercomputer maker Cray did a pre-launch of sorts for its upcoming “Baker” supercomputer on Tuesday, giving the machine its official product designation: the XE6. Although the company won’t be shipping the hardware until later this year, there’s already a backlog of orders for the petascale machines, and Cray is setting the stage for a big debut.

The XE6 represents Cray’s next-generation supercomputer that is being billed as the first x86-based machine designed to deliver sustained petaflops performance across a range of HPC applications. Although the new super is employing the same AMD CPUs as the current generation XT6 (thus retaining the ‘6’ designation for the 6th generation Opterons), the new Gemini system network provides the foundation for much more scalability and performance.

Cray is saying the new architecture will scale up to 100 teraflops of raw performance and be able to offer multiple petaflops for those applications that can take advantage of hundreds of thousands or even a million CPU cores. As such, the XE6 becomes Cray’s top-end offering for production supercomputing, costing $2 million-plus for the privilege of owning one.

The XE6 inherits a lot of its basic features from the XT6 line. Most importantly, the Opteron 6100 (Magny-Cours) compute blades are shared between the two systems. As a consequence, an XT6 installation will be able to be upgraded to an XE6 by swapping out the SeaStar interconnect hardware with Gemini parts. Likewise, an XT5 system can be upgraded to an “XE5” in the same manner.

The recently retooled Cray Linux Environment (CLE), which includes a cluster compatibility mode for ISV codes, will also be the operating systems in the XE6. Although the new OS is advertised as supporting at least 500K cores, its true upper limit will probably be tested after the first big XE6 systems are deployed.

As mentioned above, the key new feature of the design is Gemini, which provides the foundation for the XE6’s high-end capabilities. “The Gemini interconnect is really the interconnect that we’ve designed for the multicore era,” says Barry Bolding, Cray vice president of the Scalable Systems group. “It pushes those boundaries much further than the older SeaStar interconnect could do.”

Gemini supports a “high-radix” network and delivers extreme messaging rates (100 times better than SeaStar) as well as much improved latency (three times better than SeaStar). In general, a high-radix router implementation uses many narrow ports rather than fewer, wider ports. Although there are some challenges involved, the design is more able to convert pin bandwidth to reduced latency, and do so at a reduced cost. In this case, the better performance allows the XE6 to scale up to a million CPU cores and beyond.

The switch from SeaStar to Gemini is a big move for Cray, representing the first such architectural change in five years. It is similar to the older SeaStar network only inasmuch as it shares the same 3D torus topology and switchless design. Gemini actually has much more in common with the interconnect used in Cray’s X2 (Black Widow) vector-based supercomputer, and is basically an updated version of that design. According to Bolding, the company believes this high-radix architecture will be one Cray relies on for the next decade or so in all its top-of-the line supers.

One of the more interesting features enabled by Gemini is support for a global address space. Global memory is a well-known feature in SMP machines, but for distributed memory systems, has only been accomplished through software/hardware virtualization (for example, ScaleMP and 3Leaf). According to Bolding, the XE6 will be the first HPC machine with a global addressing capability in an MPP design.

Global memory support in the Gemini hardware allows an application to grab a piece of memory on a non-local node and treat it as its own (and without having to bother the OS). PGAS languages like Co-Array Fortran (CAF) and Unified Parallel C (UPC) or even SHMEM, can be used to write parallel applications that take advantage of this shared memory layout. In general, these languages enable a more straightforward way to treat data on big memory machines compared to message passing. And although not nearly as popular as the MPI-style programming, PGAS languages may become more popular as systems scale beyond the practical capabilities of message shuffling codes. Cray’s Chapel language, developed under DARPA’s High Agency’s High Productivity Computing Systems program, represents the company’s own programming environment that supports a partitioned global address space.

Besides global address support, Gemini also has smarts in it to recover from link failures and perform adaptive routing. For example, since there are multiple communication channels per node, degradation on one channel can be accommodated by rerouting traffic. A related capability enables a warm swapping of blades (without a system shutdown). This is accomplished by quieting network traffic, rerouting the packets, replacing the blade, and then restoring network traffic.

The Gemini chip itself is built by TSMC on a 90nm process node. It’s larger than the SeaStar die, but each Gemini chip can manage two nodes, so it takes the place of two SeaStar processors. According to Bolding, Gemini does use slightly more power than the two chips it replaces, but the added functionality and performance are well worth the extra few watts.

Cray already has some deep-pocketed customers lined up for XE6 installations, including the DOE’s National Energy Research Scientific Computing Center (NERSC), the High-End Computing Terascale Resource (HECToR) in the UK, the Korea Meteorological Administration (KMA), the National Nuclear Security Administration (NNSA), and the National Oceanic and Atmospheric Administration (NOAA). Cray was also tapped to deliver three XE6 supers to the US Air Force Research Laboratory, the Arctic Region Supercomputing Center and the US Army Engineer Research and Development Center. All told, more than $200 million worth of XE6 systems are on backorder.

Although the exact date that the XE6 machines will be ready for shipment is still up in the air, Cray is sticking to its previous Q3 timeframe for a production launch. And since the company is trumpeting the new super this week, it’s a good bet that it doesn’t foresee any showstoppers that would derail this schedule.

That, of course, would be good news for the supercomputer maker. First quarter sales were off to a slow start, so if the company expects to hit its yearly revenue goal of $305 to $325 million, it’s going to need to realize a significant chunk of XE6 sales in the second half of the 2010. Since a number of the announced installations are scheduled for deployment toward the end of the year, it’s going to be a photo finish for Cray.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire