Sometimes Accomplishment Is Starting Something New Rather than Finishing Something Old

By Thomas Sterling and Chirag Dekate

June 2, 2010

So perhaps it was of this last year of the first decade of the first century of the new millennium in the field of high performance computing. Not to minimize the continued progression of petaflops computing as we enter Year 3 AP (After Petaflops).  With the addition of new machines both deployed and planned, petaflops-scale applications, as acknowledged by the Gordon Bell Prize, steady increase in the number of cores per socket, and the uncomfortable marriage of GPUs in heterogeneous structures — the last year has been marked by continued and demonstrable advances. As petaflops computing has become truly international in scope and application, this emerging system class is no longer an ethereal fringe, but rather has gained firm traction at such power houses (yes, meant in more than one way) as Oak Ridge National Laboratory, where they now serve humanity as the heavy lifters in computational methods addressing the challenges of the modern world.

But one potentially important accomplishment in the last twelve months is not something that has been completed; instead, it is something that has been just initiated. Even as we gain a footing in the era of petaflops computing, we have set in motion the exploration of the undiscovered domain of exaflops computing. This year has seen the launching of multiple programs to develop the concepts, architectures, software stack, programming models, and new families of parallel algorithms necessary to enable the practical realization of exaflops capability prior to the end of this decade. These have involved unprecedented cooperation and coordination within government agencies and laboratories, industry, academia, and internationally. At the dawn of the petaflops era, the emerging focus on the performance regime three orders of magnitude beyond is unlike anything before it and in stark contrast to the grass-roots workshops towards petaflops back in the relaxed days of the run-up to teraflops in the 1990s.

There are good reasons for this. The challenges facing the continued delivered sustained performance across a broad range of application domains are dramatic and reflect a corner turning on the trends that have driven us forward, ultimately due to Moore’s Law and the semiconductor revolution. These, somewhat over simplistically, can be summarized as: concurrency, power, reliability, and productivity.

In the past, the double-whammy of increases in clock rate and increases in processor core complexity delivered two decades of sustained exponential growth in processor core performance which when integrated in clusters of SMP nodes has given us the iconic images of straight lines on semi-log graphs with respect to the passage of time. Now the S-curve is bending for a second time, and not in a good way. Power has hit the threshold of pain, and the architecture tricks have been largely exhausted. Increased resources have been dedicated to confronting the egregious impact of the memory wall and the latencies and blocking incurred. Ever decreasing efficiencies (single digit not uncommon) by several normalization factors (e.g., FLOPS, utilization, per transistor, per joule, per hectare) have exposed the soft underbelly of an ultimately unsustainable golden age: exponentials cannot go on forever.

Indeed, the authors have projected that “we will never achieve sustained zettaflops computing” using the hardware paradigm of Boolean logic gates and binary data storage. Due to the speed of light, Boltzmann’s Constant, and atomic granularity it is predicted that the wall, which is more like a very steep hill will occur at about 32 exaflops. But we are not there yet; indeed, there are a good four orders of magnitude to go. And that will be hard.

Three major activities can be cited that have just been created during the last year to engage the talents of the international community including experts in: hardware, software, algorithms, and domain science. These have resulted from at least two years of preliminary workshops and studies sponsored by diverse entities and internal industry planning as well. These are: IESP, DOE X-Stack, and DARPA UHPC. There are many smaller activities as well.

The International Exascale Software Project (IESP) has brought together the interests, talents, and resources of the international community to cooperate and coordinate long-term development of the necessary software infrastructure required to enable effective exaflops-scale performance before the end of this decade. Learning from past experiences where software always appeared to lag behind the hardware, this world-straddling endeavor is driven by the recognition that to succeed, the software needs to be there when the hardware is. More importantly, the hardware designs must be informed by the needs of the software so that there is minimum mismatch and the concomitant ensuing generations of unsatisfactory patches. But there is an even more critical imperative: the realization that without the right software, exaflops may not be achievable at all (except in special cases) and that no one nation can go it alone; the HPC community is just too small for multiple conflicting paths of a top to bottom software refactoring. In the last year, four multi-day meetings in France, Japan, and the UK among representatives of all of the major HPC nations have provided an emerging roadmap to inform future planning of the joint development of the full supporting software infrastructure for Exascale systems’ operation and programming.

The US DOE has also begun a new program of research with the release of its recent RFP to develop the components of the “X-Stack,” the software required to enable a new generation of science and technology applications with the advent of future exaflops capable systems. These elements include operating systems, runtime systems, programming models and tools, and methods for reliability and mass storage and I/O. The winners, not yet announced, will represent a new wave of research in the US combining partners in the national laboratories, industry, and academia driven by the requirements of major mission-critical applications. This and other related DOE programs were developed in part from an extensive series of community workshops through the preceding year on application domains, hardware and software systems, and mathematical algorithms. This research will join other programs around the world in the first concerted effort to turn the corner and set a new trajectory for future HPC system software architecture, design, and implementation.

Perhaps most dramatic and at the same time risky undertaking is the new DARPA Ubiquitous High Performance Computing (UHPC) research program. UHPC is intended to attack the above challenges through nothing less than revolutionizing HPC system design. Through a lengthy program development process that involved three separate studies in technology, software, and resiliency engaging the talents of experts throughout the US, UHPC evolved an energetic research charter to reinvent computing prior to the end of this decade. The program was not explicitly targeted to exascale but rather to the mid-range of one or some unspecified number of interconnected and interoperable racks, each capable of approximately 1 petaflops sustained performance with a power budget of less than 60 kilowatts.

At the foundation of this program is the call for a new model of parallel computation to replace the venerable and highly successful message-passing model that has dominated for the last two decades. A major emphasis is on power reduction with an average energy of 25 Pico-Joules per floating point operation. A thousand such racks if sufficiently efficient would deliver 1 exaflops for 20 megawatts.

Emphasis is placed on the co-design of both hardware and software components in response to challenge problems that will span the applications domains from some of the largest STEM problems to heavy real time I/O streaming to knowledge management graph problems. Scaling down is as important as scaling up to UHPC, with single modules capable of multiple teraflops (and in mobile modules this is an important operating point).

The program may run eight or nine years and result in one or more prototypes of fully-operational systems. The first half of the program, Phases 1 and 2 spanning four years, will begin this summer with the winning teams to be announced in a month’s time. Atypical of such programs is the expectation of strong cooperation among competing teams and the delivery of much of the techniques and technology to the research community throughout the four phases of the program.

This year has indeed been a very productive year, both for its accomplishments in the deployment and application of petaflops-scale systems and for its forward-looking inauguration of the exaflops era.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire