PathScale Looks to One-Up CUDA, OpenCL with New GPU Compiler

By Michael Feldman

June 24, 2010

HPC compiler maker PathScale has unveiled ENZO, a new GPU software development suite aimed at the high performance computing space. The solution includes a home-grown compiler, runtime system, and device driver. ENZO is being built for performance from top to bottom and will initially target NVIDIA’s high-end GPUs.

Up until now, users looking to exploit graphics processor acceleration for technical computing had to rely on either NVIDIA’s CUDA software stack or OpenCL implementations (from AMD or NVIDIA). Although a number of high-level language implementations have been built on top of these lower level interfaces, PathScale will be the first vendor to offer a complete third-party development stack for GPU computing developers.

PathScale, you’ll remember, was resurrected following the August 2009 dissolution of SiCortex, which had purchased the compiler technology from QLogic two years earlier. Thanks to the support of Cray and some creative financing, the PathScale team was reassembled after SiCortex went belly up. PathScale’s main products today include C/C++ and Fortran compilers for AMD and Intel x86 CPUs.

According to PathScale CTO Christopher Bergström, interest in doing a GPU compiler began shortly after the company rebooted last year. Since NVIDIA was leading the GPGPU charge, they started with the idea of targeting the Tesla GPU line. Hoping to reuse some of NVIDIA’s CUDA stack, they quickly found that the code generator and driver were not optimized for performance computing. “Their drivers, which really dictate quite a bit of what you can do, are supporting everything from gaming to HPC,” says Bergström. “It’s not that they haven’t built a good solution. It’s just not focused enough for HPC.”

Moreover, they found writing CUDA code for performance tedious, requiring a lot of programmer hand-holding to optimize performance. In particular, the PathScale engineers found that the register usage pattern in the CUDA compiler was generalized for all types of GPU cards, so performance opportunities for Tesla were simply missed.

In any case, says Bergström, “we didn’t have permission to use CUDA, and we thought OpenCL sucked.” So PathScale set out to write their own compiler/runtime/driver stack. Unfortunately NVIDIA’s GPU ISA is one of the company’s closely guarded secrets and most programmers only get access to the hardware through software interface abstractions, like CUDA, OpenCL, OpenGL, PTX , or DirectX. NVIDIA is happy to support implementations for all of these, but that eliminates the option of third-party compiler developers controlling the lowest level code generation.

So instead they tapped an open source NVIDIA graphics driver — Nouveau, which is included in the Linux kernel — and created a fork off the source code with high performance computing in mind. PathScale also managed to recruit most of the talent from the driver project. Bergström says the team was able to reverse engineer the NVIDIA ISA, register details, and device exception handling. With that knowledge, they set out to rewrite the code generator (compiler back-end), driver, and runtime, focusing on improved memory management, error handling, security and HPC-specific features, and performance.

The twist here is that GPU ISA is volatile — at least more so than say a CPU. Fortunately, the instruction and register enhancements tend to be incremental. Bergström says they will support all the latest GPU cards being used for HPC, that is, essentially all the cards supported in the three generations of Tesla products. PathScale has a working pre-“Fermi” driver now and is working on the compiler port. “We just got access to the hardware last month,” explains Bergström. “So we’ve basically had 30 days to start tackling the ISA and the registers.” He predicts they’ll have a fairly robust Fermi port within the next 60 to 90 days.

For the GPU compiler front-end, PathScale decided to use a directives-based approach, in which programmers can instrument source code to tell the compiler to parallelize specific code regions for the GPU. The directives approach offers vendor and device independence, while allowing developers to make incremental changes to their source code as they identify more regions for GPU acceleration. OpenMP uses the same directives model for shared-memory parallelization.

PathScale opted for HMPP directives, a set of directives invented by CAPS Enterprise for their C and Fortran GPU compilers. In the CAPS products though, the compiler just converts the HMPP C or HMPP Fortran to CUDA, which is subsequently converted into GPU assembly by NVIDIA’s CUDA back-end. PathScale, on the other hand, has attached their own back-end onto the HMPP front-end without losing any information between source-to-source translations.

The other part of the story is that CAPS, along with PathScale (and some as yet unannounced players) have decided to make the HMPP directives an open standard. The idea here is to attract application developers and tool makers to a standardized GPU programming model which protects their investment but is still targeted at gaining best performance.

Bergström is careful not to claim performance superiority over the CUDA technology just yet. He says ENZO is currently in the alpha or early beta stage. According to him, PathScale engineers have hand-tuned some code using GPU assembly, and have achieved a 15 to 30 percent (or better) performance boost. In other cases, they’re not quite there and need to find the right optimizations. Bergström is confident that those hand-coded optimizations can be incorporated into the compiler infrastructure. They have identified a number of areas where they can reduce register pressure, hide latency, reduce stalls and improve instruction scheduling. “We know the performance is there,” says Bergström.

The alpha/early beta version is now available for selected customers, with the production compiler suite slated for release later this summer. According to Bergström, over the next year, PathScale will be investing heavily in improving the GPGPU programming model. “People shouldn’t have to worry about thread synchronization or register memory bank conflicts,” he says. “The compiler will just handle that. Ultimately we want to have a fully automatic solution.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire