The Week in Review – 06/24/2010

By Tiffany Trader

June 24, 2010

Here is a collection of highlights from this week’s news stream as reported by HPCwire.

CAPS, PathScale Collaborate on Making HMPP a New Open Standard

Double-Take Software Offers All-In-One Solution for HPC

SAS Innovation Revolutionizes Agile Decision Making

New AMD FireStream GPUs Double Performance

AMAX Releases New GPU Supercomputers with AMD FireStream GPU

Quantum Computer a Stage Closer with Silicon Breakthrough

NAG Announces Application Developers’ Guide for Solving Optimization Problems

Scapos Offers Efficient and Scalable Multicore Programming with GPI

NNSA Administrator Addresses Next Generation of Computational Scientists

Mayo Clinic, University of Illinois Create Research Alliance

PBS Works 10.4 Increases Accuracy and Predictability for HPC Forecasting

IEEE Launches Next Generation of High-Rate Ethernet with New IEEE 802.3ba Standard

Berkeley Lab Receives $4M for Energy-Related Research

SciDAC Astrophysics Code Scales to Over 200K Processors

ALCF Runs Over Two Billion Processor Hours, Enabling Cutting-Edge Research

Tokyo Tech heralds Tsubame 2.0’s debut

The supercomputing world better look out, Japan is about to take a big seat at the petascale table. An article from Asian tech pub Tech-On relays the latest details regarding the Tsubame 2.0 supercomputer, which the Tokyo Institute of Technology released this week during a press meeting. According to the university, the system will have 2,816 six-core, 2.93 GHz, Intel Xeon 5600 microprocessors and 4,224 NVIDIA Tesla M2050 graphics processing units (GPUs). Performance per node comes out to 1.6 teraflops and performance per rack is 51.2 teraflops. The system will be constructed by NEC and Hewlett-Packard and will cost approximately $35 million, including basic maintenance for four years.

Such impressive hardware specs place the Tsubame 2.0 securely in the land of petascale. In fact, Japan’s first petaflop system prepares to easily leap past the one petaflop mark to clock in at 2.39 petaflops, which could earn the supercomputer a second finish on the TOP500 list, but alas, that’s only in terms of theoretical peak performance. As of the June 2010 list, the highest-rated systems are China’s Nebulae, which clocks in at 2.98 petaflops peak, and the United State’s Jaguar, which clocks in at 2.33 petaflops peak. Of course, the primary TOP500 measure is maximum Linpack performance, by which the Tsubame 2.0 system will likely still achieve a very respectable third of fourth place finish. However, since the TOP500 is a moving target, almost anything is possible.

Satoshi Matsuoka, a professor at the Global Scientific Information and Computing Center (GSIC) at Tokyo Tech, explains that while the system has a mixed vector-scalar architecture, it actually functions more like a vector computer because the computation capacity of its GPUs accounts for 90 percent of total computation capacity. Because of this architecture, the computation capacity will differ depending on the type of calculation it must perform. In terms of the Linpack benchmark, optimum performance is between 1 and 1.4 petaflops (double-precision value). However, for vector computer type calculations, such as weather prediction, the performance can reach the 150 teraflops range, vastly outperforming the the world record of 50 teraflops.

In comparison with Tsubame 1.0, which was constructed in 2006, the second-generation supercomputer touts improved memory bandwidth at 200 Tbps, 33 times higher than its predecessor. Total memory bandwidth is 720 Tbps, a 42x improvement over the Tsubame 1.0. The supercomputer’s multilevel storage system is comprised of DDR3 DRAMs and SSDs (solid state drives). The memory capacity of the backbone system’s DRAMs is 80.6 terabytes for the microprocessors and 12.7 terabytes for the GPUs, and the total memory capacity of the SSDs is 173.9 terabytes.

The new system also touts improved power efficiency versus its predecessor, due in large part to the GPUs decreased energy needs, as well as the machine’s sealed cooling system. The power consumption of the Tsubame 2.0 is 1 MW  versus its predecessor’s energy requirement of .85 MW; however, considering the newer supercomputer has a performance that is 30 times greater than that of its predecessor, the overall power consumption is lowered to 1/25th, a huge savings. If performance per watt meets expectations by exceeding 1,000 megaflops per watt, the supercomputer will reserve a possible top spot on the Green 500 list, according to Tokyo Tech officials.

Despite the fact that Tsubame 2.0 is expected to start production this fall, the actual construction of the system has yet to commence. Meanwhile, plans are already underway for Tsubame 3.0, with a projected debut of 2014 or 2015, a proposed 30 petaflops of computing muscle, and an energy requirement that is equal to or less than that of the second-generation Tsubame.

Cloud-optimized servers announced

There has been a spate of so-called cloud-optimized servers announced in the last couple of weeks. Things started off last week with newcomer SeaMicro’s introduction of its Internet-optimized server, the SM1000, which makes use of low-power Atom processors to handle Web-centric workloads. This week, Tilera and Quanta unveil their own server comprised of many-core general purpose microprocessors aimed at tackling cloud computing workloads. The Tilera/Quanta server, codenamed S2Q, is targeted at large-scale datacenters running Web, database, hosting, and finance applications.

Like SeaMicro’s “Internet-optimized” x86 server, Tilera’s many-core design works with cloud applications, which execute millions of small parallel tasks simultaneously, instead of very complicated single-threaded programs that require very big cores. Each server includes eight Tilera TILEPro64 processors, and, according to Tilera, is the most power efficient and highest compute density 2U server in the industry.

Last up in the run on cloud server announcements is AMD’s new Opteron 4000 Series platform, which AMD says is the “first server platform designed from the beginning to meet the specific requirements of cloud, hyperscale datacenter, and SMB customers needing highly flexible, reliable, and power-efficient 1 and 2P systems.”

These new architectures all aim to address the divide between today’s servers and the current dominant workload, which has gone from a few very difficult tasks to lots of smaller tasks as required by today’s Internet (or cloud) applications that we are all so familiar with (searching, email, social networking, etc.). For more on this subject, see related coverage at our sister publication HPC in the Cloud, with Editor Nicole Hemsoth at the helm. Here are some of her thoughts on the topic:

Granted, while [the Tilera servers] don’t have x86 compatibility, if they are able to demonstrate solid power and performance this will certainly be attractive for many, especially as large-scale datacenters are having trouble fitting their current servers in at the rate they’d like to. Intel and AMD are making the same play, but they are certainly lagging behind Tilera’s much more aggressive manycore roadmap. It is worth noting as well that SeaMicro who emerged from the ether last week with its announcement of a low-power server sporting 512 Intel Atom cores is another player here, as are those working on ARM chips for similar types of servers. In the case of SeaMicro, however,  while they are functioning on the same general idea, they will likely not have the same power-performance zing since they will be tied inextricably to the legacy x86 architecture.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire