Amazon’s New HPC in the Cloud: Good Marketing or Real Progress?

By Wolfgang Gentzsch

July 17, 2010

A few days ago Amazon announced that it added HPC capabilities to EC2. This is great news indeed for the HPC community, because it further paves the way for HPC to becoming mainstream, which indicates there is cloud money to be made with HPC. Obviously, Amazon did a careful market analysis, and certainly got some requests from important users, and perhaps felt some pressure after rumors surfaced that Google’s server farmers are playing with Infiniband.

In more detail, Amazon added so-called Cluster Compute Instances (CCI) to EC2, each consisting of a pair of quad-core Intel X5570 (Nehalem) processors with a total of 33.5 ECU (EC2 Compute Units), 23 GB of RAM, and 1690 GB of local instance storage. CCIs are interconnected using a 10 Gbps Ethernet network. Within this network you can create one or more placement groups of type “cluster” and then launch CCIs within each group. Instances within each placement group of this type benefit from non-blocking bandwidth and low latency node to node communication. First benchmark results from LBNL show their HPC applications on CCIs ran 8.5 times faster than on the previous (vanilla) EC2 instance types.

So far so good. To me, in this context, there are two aspects which seem interesting: performance and price. Let’s look at performance first:

To achieve high performance, many HPC application programs have been optimized in the past for high execution speed, e.g. through parallelization of numerical algorithms, speeding up communication, overlapping communication with computation, and other sophisticated tricks. Thus an application programmer’s limits are mostly set by physical boundaries: e.g. if processors or interconnects are slow. Now that Amazon has added fast processors and Ethernet to its server farm, there is no surprise to see some interesting speedups over the standard EC2 servers and interconnection. But Ethernet is not Infiniband, and you still face the cloud’s virtualization layer, which may cause different parallel (virtual) processes sitting on different cluster compute instances which still may cause communication delays. Fair enough, Amazon admits that the only way to know if you got a genuine HPC setup for your specific application is to benchmark it, which is anyway a general wisdom in HPC (We should ask Ed Walker to repeat his NAS Parallel Benchmark tests from 2008 now on the new CCIs).

Looking closer into the TOP500 list, Amazon’s Linpack on 880 CCIs (7040 cores) and 41.82 TeraFLOPS is giving them the 146th position. Other Ethernet based supercomputers with a similar position have similar numbers of cores, no surprise. BUT, those with a similar position and with Infiniband interconnect need only about 4800 cores to achieve the same performance.

Therefore, my guess is that most of the average real HPC capability computing applications (e.g. in electronic design automation, automotive applications, or finite-element based material analysis) won’t show a big performance improvement over vanilla EC2 instances, especially those which really demand low latency and high bandwidh. But, fortunately, not all of the HPC applications have this demand; especially the many ones under the umbrella of  Capacity Computing with more loosely coupled parallelization (and thus moderate to no communication) might benefit from this improvement. And the fact that the Berkeley LBNL expert team has been involved in early beta, and certainly in consulting AWS and doing a lot of HPC benchmarking, gives the whole project real  credibility. I am sure we will soon see some good results, lessons learned, and recommendations from LBNL; at the latest when Kathy Yellick from LBNL will give her keynote at the ISC Cloud Conference in Frankfurt on October 29.

Another fact that Amazon seems to take HPC serious now is Cycle Computing’ s announcement to schedule HPC jobs on AWS Compute Clusters with Oracle Grid Engine resource manager which (as former Sun Grid Engine) is widely used today on HPC clusters and private clouds in research and industry.

Still the best solution for the HPC user would be if you were able to select between Ethernet and Infiniband, to switch virtualization on and off, and to chose between slower and faster CPUs, and multi-core optimization software such as MCOpt from eXludus. But building and maintaining such a variable cloud infrastructure for the small HPC community might not be economic, or might become much more expensive for the user than to maintain her own internal HPC cluster.

 The second important factor in this scenario is price. Let’s look at Amazon’s Linpack benchmark on its CCIs. Each CCI as described above costs $1.60 per hour. Amazon ran Linpack on 880 CCIs (7040 cores) and measured the overall performance at 41.82 TeraFLOPS giving them the 146th position on the TOP500 list. The cost for such a CCI cluster is 1.6*24*30*880  = $1M per month and $12M per year (and if you select Reserved Clusters the price will be 4.3M per year). Not cheap.

In industry, many HPC infrastructures are so well managed that they are at top utilization for almost all the time and their capacity is also tuned to be sufficient for their regular workloads. If capacity needs are trending upwards then they adjust.

But, there is one use case for which Amazon’s CCI can be very useful: What if a department has a fire-drill project for which additional resources are needed immediately, and if only for a restricted period of time? Today, nobody has a simple solution to address this. It takes six months on average to procure, deploy and activate new resources. So they either can’t do it, or they delay other work to free up capacity for the urgent project to run. That might work for a project requiring a few hours or days of access to resources but not for something requiring months. And apparently many companies have those fire-drill problems in some regularity.

And that’s exactly where they would like to use clouds. They’d have the ability to come back and say to the user: “the option we can offer to you is more expensive and has worse performance plus you need to be aware of certain security and data privacy issues but if you’re willing to put up with that then we can provide you a solution.” And by virtue of existing Cloud Adapter software (for cloud bursting as exemplified and simplified by the Service Domain Manager for OGE)  the end-user will actually get the illusion to work inside his company’s regular HPC environment.

Thus, usage of clouds is anticipated to add more options and flexibility to their current IT infrastructure which by all means will be maintained and even will grow. If you are a large corporation and if you have an established and well managed (!) data center then operating your own is more effective. The picture looks different if you are a small or medium sized enterprise which starts getting its feet wet on such infrastructure. Or for that matter also if you are a larger corporation and you have troubles with your data center as it stands. Instead of going through the learning curve of getting your own infrastructure “right” you might choose just to rely on a service like AWS.

Dr. Wolfgang Gentzsch is the General Chair for ISC Cloud’10, taking place October 28-29, in Frankfurt, Germany.  ISC Cloud’10 will focus on practical solutions by bridging the gap between research and industry in cloud computing. Information about the event can be found at the ISC Cloud event website.  HPC in the Cloud is a proud media partner of ISC Cloud’10.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire