Nimbus Goes After HPC Market with Disk-Priced Flash Array

By Michael Feldman

July 20, 2010

Nimbus Data Systems has unveiled its new high-density enterprise flash memory system, delivering 10 terabytes of solid state capacity per 2U shelf. The S1000 can scale up to 250 TB per system and is being priced to challenge spinning disk appliances head on. For HPC and other enterprise users looking to turbo-charge performance of terascale-sized data sets, Nimbus offers a compelling case for making the switch to flash technology.

Four-year old Nimbus is headquartered in San Francisco, Calif., and had been aggressively pursuing the emerging flash-based storage market with its S-class storage arrays. The company has managed to collect about 200 customers, the largest being the US Department of Defense. They’ve also corralled OEM wins with IBM Tivoli and AMCC. As a result, Nimbus says they’re profitable and debt free — not bad for a company that grew up during one of the worst economic downturns in modern times.

The general idea behind employing flash memory for I/O drives is to take advantage of Moore’s Law in order to close the performance gap between external storage and the other computer components. Over the past 10 years, hard drives have not become appreciably faster or more power efficient, while the performance of a computer’s solid state components has increased several-fold. “We believe storage is on an unsustainable trajectory in the datacenter,” says Nimbus CEO Tom Isakovich. “While CPU, memory and network performance have all grown exponentially, storage performance and storage efficiency really have not kept pace.”

External storage demand is escalating, though. Virtualization, data warehousing, and high performance computing are multiplying the need for more I/O, especially random-access I/O. Isakovich says more hard drives, storage tiering, and cache solutions are not the answer. According to him, while they may boost performance a bit, they’re really not addressing the underlying inefficiency of the spinning disk technology. “Drives have really run their course,” says Isakovich.

Nimbus’ mission to drive a stake through the heart of the hard drive was launched in April, with its first all-flash memory S-class storage arrays: the S250 and S500, which provided 2.5 TB and 5.0 TB per shelf, respectively. All of the S-class offerings use Micron’s Enterprise Multi-Level Cell (EMLC) NAND flash, which is five times more durable than vanilla MLC used in consumer devices and much less expensive than Single-Level Cell (SLC) NAND commonly used for most enterprise SSDs. SLC remains the more robust technology, but at about quadruple the cost and a quarter of the density of EMLC silicon.

Nimbus has managed to layer even more reliability on top of the EMLC silicon by incorporating write amplification, wear leveling and dual-parity RAID into its design. They also over-provision the storage by 28 percent to account for the inevitable degradation of the NAND devices over time. The S1000 employs the higher density 34 nm EMLC NAND from Micron, which makes it possible to offer 400 GB of storage per blade. (Because of the over-provisioning, there is actually 512 GB per blade.) The product comes with a one-year warranty, which is upgradeable to three or five years, although Isakovich believes the hardware will actually be just fine for up to 10 years.

Although S1000 performance may be less than the more expensive SLC-based flash memory products out there, the Nimbus offering easily outruns 15K RPM disk array technology typically found in tier 1 storage. Compared to disk, the S-class products deliver up to 24 times more IOPS (1.65 million), up to 16 times faster data transfer (7.2 GB/sec), and 95 percent lower latency (300 microseconds). Space-wise, a single S1000 2U shelf can deliver the same number of IOPS as in four racks of spinning disks.

Since no moving parts are involved, power savings are equally as impressive. Nimbus is claiming 90 percent lower energy usage — as low as 15 watts per terabyte — and a 70 percent reduction in BTU cooling demand. And since there is less heat generated and no motors to wear out, fewer replacements will be needed.

An S1000 shelf is made up of 24 hot-swappable storage blades. Up to 25 shelves can be stacked via 6G SAS ports, making it possible to deploy a 250 GB file system all in flash. A storage shelf is powered by two Intel quad-core Nehalem processors, although Isakovich says expansion shelves don’t require CPUs or the associated memory. According to him, the flash is so much faster than a disk that the CPUs are rarely tied up waiting for I/O to complete, so you just need less of them to manage the storage.

Since all S-class gear speaks iSCSI, NFS, and CIFS, the hardware can act as both a SAN device and a NAS device. Systems come standard with four 10GbE ports (SFP+ or 10GBASE-T) per appliance, which can auto-negotiate down to GbE when needed. Nimbus is also now offering an upgrade to twelve 10GbE ports, using a technology they’re calling “FlexConnect.” It employs triple active-active 10 GbE network controllers, and, in some cases, will eliminate the need for a standalone SAN switch.

The combination of off-the-shelf 10GbE components, Intel CPUs and EMLC NAND chips has enabled Nimbus to achieve cost parity with 15K disks products. All the S-class products, including the new S1000, are priced at $10,000 per terabyte, which is more or less in line with other tier 1 disk-based appliances.

Of course, any vendor could assemble similar hardware, but the S1000 is more than just flash-in-a-box. The real secret sauce is Nimbus’ HALO operating system, a full-featured software stack that comes standard in all S-class platforms. It includes snapshots, replication, mirroring, deduplication, compression, thin provisioning, real-time analytics, proactive notification, and a Web management interface. In late 2010, the company is planning to make a programmable API available as well. Because all this functionality is baked in, there is no need to purchase third-party software or hardware to make the system enterprise-capable. “We think that gives us a sustainable advantage since it has taken us five years to write all this software,” says Isakovich.

Because the company has been able to solve the acquisition cost penalty for flash, while at the same time offering a feature-rich enterprise storage platform, it may be carving a unique home for itself in the IT landscape. Competitors like NetApp, EqualLogic (Dell) and EMC all offer SSD capabilities to one extent or another, but there are no pure flash offerings to match the Nimbus S-class. On the other hand, pure flash array vendors may offer better performance with SLC NAND, but typically bundle little if any software with their systems. And because those systems are based on the more expensive SLC technology, they come at a price premium.

With the S-class platform, Nimbus is looking to go after IOPS-critical storage applications, especially virtualization, traditional database processing, and On-Line Transaction Processing (OLTP). Now, with the higher capacity S1000, they have a credible entry for the HPC market. Data-intensive applications like seismic analysis, image rendering, and many science codes are I/O bound and thus ideally suited for flash-based storage. Isakovich says they have a proof of concept deployment at one of the big supercomputing centers and also have a couple of oil and gas companies looking at systems. He expects to see some customer deployments by the end of the quarter.

The new platform currently tops out at 250 TB per system, but the dedupe and compression technology can boost the effective storage by a factor of 3 to 10, pushing the S1000 into the petascale realm. According to Isakovich, they’re planning to expand system capacity even further later this year. “The demand we’re seeing from the HPC community is rather significant and we think we can continue to push the density envelope even more,” he says.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire