Three Years On, GPU Computing Is Coming of Age

By Michael Feldman

October 7, 2010

If you’ve been reading this publication for any length of time, I’m sure you’ve noticed how much ink has been spilled on NVIDIA’s GPU computing business. The reason for that is simple: general-purpose GPU (GPGPU) computing has become a technology disrupter in HPC, and NVIDIA is the company driving it. And if you followed our recent coverage of the GPU Technology Conference (GTC) in September, you’ll get a pretty good idea of why and how this is happening.

But the technology, and especially the business, is still in its early stages. It was only in June of 2007 that NVIDIA announced its first Tesla GPU products for technical computing. Although AMD pushed its GPU FireStream products into market that same year, it is NVIDIA that has set the pace in this market. At GTC, I got a chance to talk with Andy Keane, who has headed NVIDIA’s Tesla unit since its inception. During our conversation, he offered his perspective on how the company’s GPU computing business unfolded over the past three years.

The first question I asked him was if the Tesla business was where he thought it would be when they began three years ago. Although he’s been at the center of the storm, so to speak, Keane said that even he is a bit surprised at how far the technology has come in such a short amount of time. “I felt we pushed the GPU faster than I had expected,” he admitted.

He credits a lot of this to the enthusiasm of the developer and user community.The high-end features coalesced in the current Fermi generation, like support for ECC memory and serious double-precision performance, were always on the roadmap, he said. They were just put in ahead of schedule because the community was asking for them.

The first-ever Tesla GPU-equipped cluster was shipped to the Max Planck Institute in 2008 to support Professor Holger Stark’s work in understanding the 3D structure of “macromolecules.” Stark had been using GeForce GPUs for awhile, but he wanted to scale his work to a cluster to speed up the image processing. Later that year, the first deployment of the next-generation Teslas (the 10-series GPUs), was undertaken at Tokyo Tech. Those GPUs, in this case, 170 S1070 Tesla servers, were folded into the TSUBAME 1.2 system. That machine became the first GPU-equipped supercomputer on the TOP500 list.

More Tesla cluster deployments followed. According to Keane, these larger deployments suggested the world needed ECC support and a lot more double precision — features required by large-scale scientific computing. Customers also needed more sophisticated CUDA driver software to optimize the CPU-GPU interface. “So the people you’re selling to influence the type of features you put in the GPU and the software,” Keane said.

In that sense, NVIDIA sees itself more as a catalyst for the community, rather than a market leader, per se. It’s certainly conceivable that some company is going to make more money from products based on NVIDIA’s GPGPUs than NVIDIA itself. Beyond straight HPC, GPU computing is now being employed in everything from computer vision to business intelligence. Like the CPU, the GPU is now in that territory where developers are adapting to the chip, rather than the other way around.

“We could not have written the list of applications that are here at GTC,” Keane told me. “Some are obvious, like pattern recognition and graphics. But things like neuron research? We wouldn’t have come up with that. So there are areas we’re going into because of the creativity of the developer.”

NVIDIA is counting on its next two generations of GPUs — Kepler and Maxwell — to keep the momentum going. Although new GPU computing features are in the offing for these architectures, there is going to be a concerted focus on energy efficiency. Although GPUs already have an enviable FLOPS/watt ratio, system vendors can’t accommodate devices that are more power-hungry than the current crop of chips. Fermi Teslas are rated at 225 watts today, which is frankly more than most server makers are comfortable with. So like its CPU competition, NVIDIA will be compelled to bring out more powerful devices in the same (or lower) thermal envelop.

For supercomputing, this is going to be a critical feature, especially for those counting on GPGPUs as a path to exascale. According to Keane (but not only him), delivering a 1,000-fold performance improvement over today’s computers cannot be achieved with the old techniques — certainly not with transistor and voltage scaling, and probably not with x86 manycore. The route to faster computers will be accomplished indirectly through lower power, which will translate into more parallelism, said Keane.

But achieving that level of parallelism on a conventional CPU is a lot trickier than doing it on a GPU. NVIDIA Chief Scientist Bill Dally is convinced the GPU architecture is inherently superior in delivering more FLOPS/watt than general-purpose CPUs and has even sketched a path to exascale based on extrapolations of GPU technology.

Technology aside, there’s still the question of how NVIDIA is going to make the business model work for HPC. Keane admitted that his Tesla business wouldn’t be viable as a stand-alone company. Given the cost of semiconductor design and the rest of the infrastructure need to support processor development, you need a broad product base, he said. A $2,000 Tesla device would probably cost $10,000 if you factored in all the overhead costs. You just have to look to now-defunct ClearSpeed to see the folly of such a business model.

The way NVIDIA makes this work is to amortize the R&D costs over a much larger product set, in this case the GeForce and Quadro offerings. (The Tegra products use a somewhat different set of technologies.) Tesla is designed as a higher end product, with more cores, more floating point performance, and ECC support. The consumer side needs those things. But since all three units are able to share design and development, Keane can extract his HPC goodies. “AMD has that model, Intel has that model, now NVIDIA has that model,” he said.

But that doesn’t mean the company is content to see the Teslas remain a niche business. Far from it. Keane envisions a volume market for his high-end GPUs beyond strict high performance computing. For example, computers running air traffic control, Internet traffic, and billing systems for a telecom can all benefit from the data parallel muscle of a GPU. Although mostly invisible, these “infrastructure” computers form the backbone of many IT businesses, not to mention the government. “The real volume market for a product like Tesla is in the computers you don’t see,” said Keane.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire