Movers and Shakers in HPC: John Gustafson

By Caroline Connor

October 20, 2010

This is the first in a series of columns on movers and shakers in HPC, written by our newest contributing editor, Caroline Connor.

I had the pleasure of working with John Gustafson when he was Chief Technology Officer for ClearSpeed in 2007. Sure, I had heard about John, known for his work in HPC, describing the notion of weak scaling (Gustafson’s Law), introducing the first commercial computer cluster, winning the first Gordon Bell Award and all that. What surprised me was that there was so much more to John than the public persona. Here is a guy who is a former trampoline gymnast, built his own harpsichords at age 16, and grows orchids in his spare time. All of this is not lost upon me while I sit poolside at John’s lovely home, wondering what else I might uncover as I pull out my recorder.

HPCwire: John, you’re known for your “Reevaluating Amdahl’s Law” paper. Have you ever met Gene Amdahl? Is there any kind of debate still going on between the two of you?

John: (Laughs) I’ve met Gene, and have lunch with him every now and then; he lives right here in the Bay Area. We get along great. No, there’s no debate whatsoever. I’ve asked him things about his “law” that have been bothering me for years, and confirmed that he never meant his 1967 talk to be used to stop progress in parallel processing the way it has. He was debating Slotnick about the architecture of what would become the ILLIAC IV, saying that if you have one instruction stream, then the operating system part of that instruction stream will kill the parallelism. Gene told me that with modern systems, where every processor has its own instruction control, that argument doesn’t apply at all. So no, there’s no rivalry. I admire the man immensely and am honored to have any association with him.

HPCwire: So, what is behind your fascination with historical computers, like the 1939 Atanasoff-Berry Computer that you helped to reconstruct? It seems odd that a guy who works at the leading edge of supercomputing also works on machines that are a trillion times slower.

John: The technology of the era isn’t the important part; it’s what you do with it. So each generation rediscovers clever “tricks” about using tubes, discrete transistors, bit-slice logic, VLSI… and gives it a new name without realizing that there are many giants whose shoulders they could stand on. Another part of it is that Atanasoff has not received the credit he deserves for inventing electronic digital computing. Reconstructing his machine helped to set the record straight, and proved to people that his computer really worked.

HPCwire: I heard that you recently started managing Intel’s Ubiquitous High Performance Computing project for DARPA. What can you tell us about your new role and the project?

John: Well, this is my third time managing a grand “let’s build a big computer” project for DARPA. The first was when Steve Squires was leading the charge at DARPA in the 1980s, which led to the early hypercube projects and eventually to commodity clusters. The second was at Sun Microsystems when DARPA’s Bob Graybill was refocusing everyone on productivity instead of raw specs, and his HPCS program did a lot to realign people with the issues that really matter to computer users. Now, it’s the UHPC program. The goal is to produce an exaflop, or an exa-op, with less than 20 megawatts of electricity. If anyone can get the power efficiency that high in a general-purpose computer, it’s Intel. The aspect most interesting to me is the software part of the challenge. How much are we going to expose the architecture to the compiler developers and the library designers, versus the scientists and engineers who simply want to use the system to get work done? And do people have any idea about how power-hungry and numerically shaky our current “double precision” arithmetic will be when you’re doing a quintillion operations per second? I don’t think they do. So being able to direct such an effort is nothing less than fascinating. Finding time for outside activities just got a whole lot harder!

HPCwire: Speaking of which, what are your favorite hobbies, sports and other interests?

John: Oh, my. I didn’t expect that one. I was once a gymnast and pretty good on the trampoline, but that was quite a while ago. These days I spend my spare time playing piano and harpsichord. I actually learned to snow ski for the first time last year, and I plan on skiing more this season. Other than that, I usually enjoy the great California weather by swimming and hiking. At this point after taking on my new responsibilities for Intel, I feel lucky just to get outdoors enough to get some Vitamin D.

HPCwire: So, how old were you when you first started experimenting with electronics?

John: Oh my god, you would ask this. I don’t know whether to be embarrassed or proud about it, but I was six years old when I was assembling radio transmitters. I entered one in the science fair when I was in first grade, and won. What a geek I was! I saved up for a helium-neon laser and managed to get one when I was fifteen. I had indulgent parents who let me take over three rooms in the basement to make holograms, perform dubious chemical experiments, and generally do the kind of thing you might see in the Amateur Scientist column of Scientific American. By the time I entered Caltech as a freshman, I probably had about a thousand hours of hands-on lab experience, so the chemistry and physics courses seemed pretty easy.

My parents weren’t just indulgent, they were excellent guides. My mother had been an electronics technician at Collins Radio, now Collins-Rockwell, and my father was a chemical engineer turned MD, both as the result of World War II. One of my earliest memories was being taught about the polarity of batteries and electrolytic capacitors by my mother while trying to figure out what wasn’t working on the Heathkit breadboard circuit I just assembled. How geeky is that?

HPCwire: What are two or three interesting things about you that relatively few (or none) of your colleagues or friends know?

John: (Laughs) Well, my grandfather’s first cousin was Greta Garbo. Most of the family who came over from Sweden simply dropped the extra “s” in Gustafsson, but she probably followed someone’s good advice that even ‘Gustafson’ wouldn’t make it in Hollywood and changed her last name completely. Like my grandfather, she was from a poor farm on the outskirts of Stockholm.

Another thing people don’t know is that my father was the first guy to introduce computers into private hospitals in the US. People back then couldn’t figure out what possible use a computer could have in a hospital, but he persisted and said it could plan the diets of everyone, grade their psychological tests, maybe even monitor their electrocardiograms automatically. That was 1961 and 1962. When he visited IBM, I asked if I could go along. So here I was, this seven year old, touring one of the IBM sites in New York, slack-jawed at signs that said things like “Danger: Laser Light”… well, that was where they were working on the very first laser printers. I couldn’t understand why the reel-to-reel tape players kept starting and stopping; I thought they must all have been broken, and I wondered why no one could get them to work properly.

HPCwire: Just out of curiosity, why did you join ClearSpeed a few years ago? Based on your own personal experience, can you share any insights as to why some companies struggle in the HPC market place and so few survive?

John: Thomas Sterling told me once, “I figured out why you joined ClearSpeed: You’re re-living your youth.” I laughed, and knew exactly what he meant. I actually started my career at Floating Point Systems, a company that turned general-purpose computers into compute-intensive workhorses by adding special hardware for high FLOPS rates. I smiled when I got a pitch from ClearSpeed, who thought they’d invented the idea of using accelerators to plug into general-purpose boxes. I said, “So, your target markets are chemistry, structural analysis, and improving LINPACK scores, right?” To which they replied, amazed, “Yeah, how did you know that?” A few weeks later, I was offered the role of CTO and I agreed. It was a lot of fun while it lasted.

Seriously, in my personal opinion, HPC companies usually fail because they don’t identify their customers and their customer needs very accurately. Seymour Cray didn’t make that mistake; he was brilliant at knowing his customer base and what they wanted and needed.

HPCwire: I read just recently that Massively Parallel Technologies has announced a new software environment. As former CEO, can you share some of the history with us?

John: DARPA introduced me to MPT during the HPCS program, saying they had some very innovative ideas worth looking into. Gene Amdahl is on their technical advisory board, so I knew I should take them seriously. I was asked to take the reins to get them better connected to the mainstream HPC community, which I did. MPT has a technology for parallel programming that overlaps communication so well it allows scaling to millions of processors. The latest announcement is about something quite different. They’ve created a way to build programs that looks like the Apps Store, but hierarchical. Sort of the antithesis of open source; you get financial reward for every improvement you can make in a software supply chain. I would probably still be there had Intel not recruited me to direct their Santa Clara research lab in 2009. It was an offer I simply could not resist.

HPCwire: How would you describe yourself to someone who has never met you before, or knows nothing of your background?

John: Whew. That’s hard to do. I’d say that I’m an odd mixture of technophile and extrovert. I love public speaking, meeting people and talking to customers, which I notice isn’t true for a lot of scientist-engineer types. So I guess I’d say, “I’m a research scientist with a right brain.”

HPCwire: Lastly, what do you consider your greatest personal achievement?

John: Being influential in the adoption of parallel processing as a mainstream approach. Until 1988, when I wrote the paper about reevaluating Amdahl’s law, parallel processing was simply an academic curiosity that was viewed somewhat derisively by the big computer companies. When my team at Sandia — thank you, Gary Montry and Bob Benner — demonstrated that you could really get huge speedups on huge numbers of processors, it finally got people to change their minds. I am still amused by people out there gnashing their teeth about how to get performance out of multicore chips. Depending on what school they went to, they might think Amdahl proved that parallel processing will never work, or on the other hand, they might have read my paper and now have a different perception of how we use bigger computers to solve bigger problems, and not to solve the problems that fit existing computers. If that’s what I wind up being remembered for, I have no complaints.

About the Author

An avid HPC watcher and established technology marketing professional; Caroline resides in the California Bay Area and recently joined the HPCwire team as a contributing editor. You can reach her at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire