Supercomputing Meets Social Media

By Michael Feldman

October 21, 2010

In supercomputing these days, it’s usually the big science applications (astrophysics, climate simulations, earthquake predictions and so on) that seem to garner the most attention. But a new area is quickly emerging onto the HPC scene under the general category of informatics or data-intensive computing. To be sure, informatics is not new at all, but its significance to the HPC realm is growing, mainly due to emerging application areas like cybersecurity, bioinformatics, and social networking.

The rise of social media, in particular, is injecting enormous amounts of data into the global information stream. Making sense of it with conventional computers and software is nearly impossible. With that in mind, a story in MIT Technology Review about using a supercomputer to analyze Twitter data caught my attention. In this case, the supercomputer was a Cray XMT machine operated by the DOE at Pacific Northwest National Lab (PNNL) as part of their CASS-MT infrastructure.

The application software used to drive this analysis was GraphCT, developed by researchers at Georgia Tech in collaboration with the PNNL folks. GraphCT is short for Graph Characterization Toolkit, and is designed to analyze really massive graph structures, like for example, the type of data that makes up social networks such as Twitter.

For those of you who have been hiding under a rock for the last few years, Twitter is a social media site for exchanging 140-character microblogs, aka tweets. As of April 2010, there were over 105 million registered users, generating an average of 55 million tweets a day. The purpose of Twitter is, of course… well, nobody knows for sure. But it does represent an amazing snapshot of what is capturing the attention of Web-connected humans on any given day. If only one could make sense of it.

Counting tweets or even searching them is a pretty simple task for a computer, but sifting out the Twitter leaders from the followers and figuring out the access patterns is a lot trickier. That’s where GraphCT and Cray supercomputing comes in.

GraphCT is able to map the Twitter network data to a graph, and make use of certain metrics to assign importance to the user interactions. It measures something called “betweenness centrality,” to rank the significance of tweeters.

Because of the size of the Twitter data and the highly multithreaded nature of the GraphCT software, the researchers couldn’t rely on the vanilla Web servers that make up the Internet itself, or even conventional HPC computing gear. Fine-grained parallelism plus sparse memory access patterns necessitated a large-scale, global address space machine, built to tolerate high memory latency.

The Cray XMT, a proprietary SMP-type supercomputer is such a machine, and is in fact specifically designed for this application profile. I suspect the reason you don’t hear more about the XMT is because most of them are probably deployed at those top secret three-letter government agencies, where data mining and analysis are job one.

The XMT at PNNL is a 128-processor system with 1 terabyte of memory. The distinguishing characteristic of this architecture is that each custom “Threadstorm” processor is capable of managing up to 128 threads simultaneously. Tolerance for high memory latencies is supported by efficient management of thread context at the hardware level.

The system’s 1 TB of global RAM is enough to hold more than 4 billion vertices and 34 billion edges of a graph. To put that in perspective, one of the Twitter datasets from September 2009 was encapsulated in 735 thousand vertices and 1 million edges, requiring only about 30 MB of memory. Applying the GraphCT analysis, the data required less than 10 seconds to process. The researchers estimated that a much larger Twitter dataset of 61.6 million vertices and 1.47 billion edges would require only 105 minutes.

When the Georgia Tech and PNNL researchers ran the numbers, they found that relatively few Twitter accounts were responsible for a disproportionate amount of the traffic, at least on the particular datasets they analyzed. The largest dataset was made up of all public tweets from September 20th to 25th in 2009, containing the hashtag #atlflood (to capture tweets about the Atlanta flood event). In this case, at least, the most influential tweets originated with a few major media and government outlets.

We’re likely to be hearing more about the graph applications in HPC in the near future. Data sets and data streams are outpacing the capabilities of conventional computers, and demand for digesting all these random bytes is building rapidly. Since the optimal architectures for this scale of data-intensive processing is apt to be quite different than that of conventional HPC platforms (which tend to be optimized for compute-intensive science codes), this could spur a lot more diversity in supercomputer designs.

To that end, a new group called the Graph 500 has developed a benchmark aimed at this category of applications, and intends to maintain a list of the top 500 most performant graph-capable systems. The first Graph 500 list is scheduled to be released at the upcoming Supercomputing Conference (SC10) in New Orleans next month.

In the meantime, if you’re interested in giving GraphCT a whirl, a pre-1.0 release of the software can be downloaded for free from the Georgia Tech website. You’ll just need a spare Cray XMT or POSIX-compliant machine to run it on.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire