The Race to Indy: How HPC is Changing the Way a Leading Engineering Firm Designs and Builds the Next-Generation Race Car

By Nicole Hemsoth

October 25, 2010

Swift Engineering, Inc., a California-based designer and manufacturer of open-wheel race cars, developed key motorsports partnerships with industry-leading companies to further its bid to design and build the next generation of race car chassis for the 2010 IZOD IndyCar Series®.

In taking on this challenge, Swift Engineering looked at how the aerodynamics of a car, and the wake it creates, can be designed to enhance Indy car racing. To find the answer, Swift engineers began simulating everything: the motion of a race car on a track, the effect of the dampers on the suspension, the deformation of the tires, the behavior of the driver, the aerodynamic flow over the vehicle, and the overall structural loads.

To reach its objectives, Swift Engineering cemented a key alliance with Cray Inc. (The Supercomputer Company) to set new standards in innovative design, manufacturing and support. Swift Engineering is paving the way as the first Cray CX1000™ customer. In addition to the Cray CX1000 supercomputer, Swift is using a Cray CX1™ system to further enhance its capabilities in Computational Fluid Dynamics (CFD), a critical tool in the development of aerodynamic products.

“Cray’s CX1000 and CX1 systems will play a pivotal role in Swift’s continuing commitment to motorsport and will help Swift again re-set new industry standards in innovative design and manufacturing,” said Jan Wesley Refsdal, president of Swift Engineering. “The decision to use Cray supercomputers was the result of a focused effort to find the right resources to meet our significant and demanding design challenges. In the competitive world of motorsports, second place is the first loser and Cray’s system solution gives Swift an unfair advantage.”

Cray systems meet the variety of needs Swift faces during the conception, design and production lifecycle. The flexibility of configurations delivers the right kind of horsepower for both real world analysis and in situ modeling.

“Swift uses both physical wind tunnels and virtual modeling with CFD. Each of these methods has its advantages, depending on what you’re trying to do,” Mark Page, Swift’s chief scientist said. “We’ve been running CFD on a small cluster since 1997. We upgraded to a true HPC system earlier this year and increased our capability 10 to 100 times, depending on the problem. We aren’t just doing the same things faster; we’re doing way more things we haven’t had the ability to do before.”

These radical capability improvements apply more than just motorsports. Swift Engineering also does a substantial amount of work in unmanned aircraft for surveillance and emergency operations.

HPC Beyond Motorsports

Swift Engineering’s Eclipse concept jet was conceived and developed, from paper designs to flight tests, in 200 days, setting a new benchmark for product development in the industry. These technologies require the fastest, most powerful computational cores to meet the design goals of good endurance and reliable system operation.

With the Cray CX1000 and CX1 systems, Swift Engineering receives the latest in HPC technology in a tightly integrated compute cluster.  Both systems incorporate powerful Intel®Xeon® processors communicating over a very fast interconnect (QDR InfiniBand), allowing users to solve very large problems in small amounts of time. This level of performance is the new standard for HPC performance not only in motorsports or aviation, but any intensive CAE projects.

The New Economics of HPC

The current economic situation has reduced the amount of specialized in-house engineering projects within large companies. As a result, smaller companies like Swift Engineering face more and more opportunities for collaboration with these larger firms. With these opportunities comes increased need to provide next-generation, innovative solutions faster and better.

In more than just racing, speed-to-market is critical in any business. For any CAE team, speed and accuracy are crucial to project success. With the power of affordable, scalable HPC resources, engineers and designers working in SMBs have an opportunity to perform the testing and analysis that was out of reach just a few years ago.

By taking the first step in adopting the Cray CX1000 system for its small business enterprise, Swift Engineering is paving the way for other CAE firms looking for affordable, deployable and dependable HPC solutions to meet growing demands. Cray systems are now available in a full range of configurations. As a small business, Swift Engineering is proud to have Cray systems onboard. With no dedicated IT staff, Swift is able to deploy and manage the system without outside support and enjoy the time-to-market and financial benefits of using a Cray and HPC over wind-tunnel testing. 

Flexibility for Scalable HPC

Swift Engineering was attracted to Cray for a variety of reasons with a top consideration being the flexibility of the Cray CX1000 system in delivering hybrid capabilities through a choice of chassis. While hybrid architectures often compromise individual capabilities in the quest for multi-purpose flexibility, the Cray CX1000 machine offers choice rather than restriction. Each of the Cray CX1000 technologies is best-of-class and can be mixed and matched in a single rack, creating a customized hybrid computing platform to meet a variety of scientific workloads.

At a time when design companies need faster design-cycle time and the addition of quality and regulatory requirements creates a highly competitive marketplace, organizations that rely on CAE are looking for ways to add capacity without adding complexity and support requirements to their computing environment. Swift Engineering found that the Cray CX1000 system offered the competitive advantage they need.

“If Swift were building computers, we would be building a Cray,” said Refsdal. “And Cray for me has been synonymous with high quality, high performance state-of-the-art technology for as long as I can remember… We are thrilled to be owners of Cray supercomputers.”

To find out more about how Cray helps Swift Engineering design and engineer tomorrow’s race cars, view the interactive case study here (registration required). 
 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire