T-Platforms Places Bet on Switchless Supercomputing Interconnect

By Michael Feldman

October 27, 2010

Russian supercomputer maker T-Platforms is continuing its push into the elite end of the HPC market. On Monday, the company unveiled a joint venture with a group at the University of Heidelberg to develop a new ultra-fast interconnect for high-end supercomputing. The goal is to bring the technology to market in the form of an ASIC, which can be incorporated into a network interface controller (NIC) for HPC servers.

The technology, called EXTOLL, for Extreme Low Latency Interconnect, was born out of a research project led by Prof. Ulrich Brüning in the university’s Computing Architecture Group. The team there has created a working FPGA-based prototype for demonstration and software development purposes, but the final goal is to develop an ASIC for commercial production.

In a nutshell, EXTOLL is a switchless interconnect designed for ultra-low-latency, high bandwidth, and extreme scalability. The latter attribute is especially critical to the construction of large-scale HPC machines, which may contain tens of thousands of compute servers. According to Anton Korzh, a hardware architect at T-Platforms, the initial EXTOLL implementation will support up to 64 thousand nodes and at least a hundred cores per node. Even with the current generation of processors, that would allow systems to reach well into the multi-petaflop realm.

There is already an EXTOLL MPI software implementation in place, which has been developed and tested on the FPGA prototype. Since this technology is destined for petascale supercomputing, support for PGAS (Global Address Space) language environments is also in the works. Some support has to be baked into the operating system, and T-Platforms is planning to incorporate EXTOLL awareness into its own custom OS for HPC, ClustrX. In general, the proprietary software stack would be the biggest impediment to wider use of the technology.

Latency-wise, EXTOLL is aiming for sub-microsecond territory. The Heidelberg researchers believe they can achieve 500 nanoseconds (ns), NIC to NIC. No external switches are needed (switch logic is part of the NIC ASIC), and each hop in the network adds just 60 ns of delay. So even the worst cast latency for a 10,000 node supercomputer would be in the neighborhood of 3 microseconds — assuming a 3D torus network design, which is what T-Platforms has in mind for its implementation.

Bandwidth, too, is aimed at the upper end of the spectrum. Each of the six EXTOLL links on the NIC will be capable of transferring 120 gigabits/second, which works out to about 90 GB/sec for a single device. That’s about 2.5 times the speed of the current generation QDR InfiniBand, and puts it in the realm of the 160 GB/sec Cray Gemini interconnect used in the company’s newest XE6 “Baker” supercomputers.

The original EXTOLL design was based on the HyperTransport protocol, which would have effectively limited its use in supercomputing to AMD Opteron-based servers. T-Platforms persuaded the university researchers to incorporate PCI-Express (PCIe) support as well, so they could build hardware with Intel silicon. The current roadmap will include support for both PCIe 3.0 and HyperTransport 3.0. It’s worth noting that Cray’s future system interconnect, named “Aries,” will also support PCIe, and for exactly the same reason. The Aries technology is the follow-on to the Gemini interconnect, and will be used in the upcoming Cascade-class supercomputers.

While it’s a stretch to start comparing T-Platforms to Cray, the Russian vendor seems to be following the Cray model of layering a proprietary interconnect on top of commodity x86 parts for its top-of-the-line supercomputers. The big difference is that T-Platforms bought into the technology rather than developing it in-house. The arrangement between T-Platforms and the University of Heidelberg gives the company an equity position in the joint venture. In exchange, T-Platforms is investing an undisclosed sum in the project to help move the technology into commercial production.

The idea is for the supercomputer maker to get first dibs on the new interconnect so that it can be incorporated into a future blade product aimed at the upper end of the HPC market. T-Platforms intends to keep its InfiniBand-based blade, as well, for those systems that don’t require extreme scalability. According to Korzh, the company intends to move to a more modular blade design such that either interconnect technology (or perhaps even both) can be accommodated on the same basic motherboard.

The EXTOLL-based offering is already under development and is slated for launch in Q4 2011, when production of the NIC ASICs are scheduled to commence. The EXTOLL group is also interested in producing a stand-alone product that presumably would take the form of a PCIe-based network adapter that could be plugged into standard servers. That would make for a rather interesting setup for, say, a medium-sized supercomputer. Although the EXTOLL NICs are bound to be more expensive than their commodity InfiniBand or Ethernet brethren, the fact that one can do away with external switching could make for a compelling scale-out cluster model.

Getting the technology off the ground, however, is not going to come cheap. Typical costs for ASIC development alone can easily reach into the millions of dollars. Conveniently, T-Platforms recently announced an infusion of money from the state-run “Bank for Development and Foreign Economic Affairs” (Vneshekonombank), and although specific projects were not called out, the stated purpose of the investment was for “expanding T-Platforms’ supercomputing research and development efforts, along with providing support for the company’s expansion into the global HPC market.” These maneuverings appear designed as part of a concerted strategy to expand the Russian company’s reach into the European Union and beyond.

For the time being, though, Europe appears to be the primary target for T-Platforms’ supercomputing aspirations. The Russian (and former Soviet Union) high-end supercomputing market is too small, while the US one, represented mostly by DOE labs, DoD research centers, and NSF supercomputing centers, is under the implicit mandate to buy American. That said, a differentiated high-end offering from T-Platforms could shake up the positions of established European market players like Bull, Cray and IBM, in particular, and create a more diverse set of supercomputing choices than even the US enjoys.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire