The Not-So-Unlikely Marriage of CUDA and x86

By Nicole Hemsoth

November 16, 2010

NVIDIA’s CUDA is easily the most popular programming language for general-purpose GPU computing. But one of the more interesting developments in the CUDA-verse doesn’t really involve GPUs at all. In September, HPC compiler vendor PGI (The Portland Group Inc.) announced its intent to build a CUDA compiler for x86 platforms. The technology will be demonstrated for the first time in public at SC10 this week in New Orleans.

To delve a little deeper into the what’s behind the CUDA x86 effort, HPCwire asked PGI senior compiler engineer Michael Wolfe about the rationale for producing such a product and how the technology will work.

HPCwire: Why CUDA for x86? Aren’t there enough parallel programming environments already available for this architecture?

Michael Wolfe: There are certainly many parallel programming approaches today, and no one would have created an analog to CUDA if the x86 were the only target. However, CUDA has been quite successful for programming NVIDIA GPUs. There are now customers who want portability of their CUDA programs beyond NVIDIA and GPUs. The PGI CUDA X86 compilers will provide that portability.

HPCwire: Do you think there is existing demand for such a product, or is this more of a if-we-build-it-they-will-come approach?

Wolfe: There is definitely demand for this. We approached our customers and surveyed the market before proceeding. We didn’t come up with this idea on our own.

HPCwire: What x86 hardware is being used to map the CUDA functionality? Is the intent to support both Intel and AMD platforms going forward?

Wolfe: We think of today’s GPUs as exploiting three levels of parallelism: SIMD parallelism within a “warp” (or thread block) and within a streaming multiprocessor; MIMD parallelism across thread blocks and across multiple streaming multiprocessors; and multithread parallelism, used to tolerate device memory latency. Today’s x86 processors have SIMD parallelism in the SSE (and soon AVX) instructions and MIMD parallelism across the multiple cores. Intel processors even support a limited amount of multithread parallelism. Our compilers will use the SSE, AVX and multicore parallelism.

HPCwire: What’s the point behind compiling to a “Unified Binary?” Using the same code base to target different platforms seems obvious, but at run time, won’t users know what the target is? Are you envisioning a cluster deployment scenario where only some of the nodes are equipped with GPUs, with the rest CPU only?

Wolfe: It’s not likely users will make production runs on clusters where only some of the nodes are GPU-enabled. The PGI Unified Binary allows HPC users who regularly access multiple server platforms to build one version of their application that is optimized for Intel, AMD and GPU-enabled compute nodes. Some sites even use it to ease the transition from one generation of Intel or AMD CPU to the next. The PGI Unified Binary for multiple x86 CPUs has been quite popular with independent software vendors who want to ship optimized applications without having to manage a different binary for each different processor type. We expect the same to be true for CUDA; a vendor or developer can produce a single executable that will execute using a GPU when available, and use the host otherwise.

HPCwire: Beyond that, is their any utility to writing x86-specific CUDA source code that is optimized for the CPU?

Wolfe: As I said before, an API-based programming model like CUDA probably would never have emerged simply to support multicore x86 CPUs. It was designed with the structure required for efficient GPU programming and for programming heterogeneous systems with multiple memories. That said, it can be compiled for efficient execution on x86 using multiple cores and SSE/AVX to effect parallel execution. For that reason, it has value as a uniform parallel programming model across GPUs and multicore x86.

HPCwire: Is there any intelligence in the compiler to map some of the CUDA parallelism to the CPU and some to the GPU, based on available resources?

Wolfe: CUDA is a relatively low-level programming model. The program — meaning the programmer — explicitly allocates memory on the GPU or CPU device, copies data to and from the memory, and launches kernels on the device. It’s beyond the scope of a CUDA compiler to distribute the data across multiple memory spaces, manage the data motion between them, and decide what parts of the kernel domain to allocate to what devices.

HPCwire: You are demonstrating the technology at SC10. What’s the timeframe for the product launch?

Wolfe: The product will launch in three phases. The first phase, due in Q2 2011, will include CUDA functionality on the x86, allowing execution and debugging, but not optimized for high performance. The second phase, planned for Q4 2011, will use the SSE and/or AVX instructions and other performance optimizations. The third phase will include the Unified Binary technology, allowing a single executable to run on the GPU or the x86. The time frame for phase three is sometime in mid-2012.

HPCwire: What will it cost?

Wolfe: The current plan is to add CUDA C for multicore x86 as a new feature in our existing PGI Accelerator product line. Customers who already have PGI Accelerator licenses with active subscriptions will get PGI CUDA C at no extra cost as part of their standard release updates when it rolls out.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire