Intel Charts Its Multicore and Manycore Future for HPC

By Michael Feldman

December 1, 2010

A lot of discussion at this year’s Supercomputing Conference was devoted to manycore architectures and exascale computing — two topics which seem to go hand-in-hand. But as the community hurtles toward the exaflop milestone, it has become clear that the natural evolution of multicore x86 CPUs won’t get the industry very far toward that goal. Manycore GPGPUs, on the other hand, do appear to be a viable path to exascale computing. So where does that leave GPU-less Intel?

In a nutshell, Intel’s answer to GPGPUs is its new Many Integrated Core (MIC) architecture. MIC, which was unveiled at the International Supercomputing Conference (ISC’10) this summer in Germany, is the recycled Larrabee technology that Intel originally developed for the high end graphics and visualization markets. When it became clear that effort wouldn’t yield a competitive alternative to the established GPUs from NVIDIA and AMD, Intel scrapped the project and recast the technology as an HPC accelerator.

To dig a little deeper into Intel’s HPC strategy, HPCwire spoke with Rajeeb Hazra, the general manager for the High Performance Computing group at Intel. A 15-year veteran of Intel, Hazra took over the HPC GM position from Richard Dracott in July of this year. Prior to that, Hazra was the director of the Supercomputing Architecture and Planning (SAP) group, which focuses on designing architectures for the highest end platforms, that is, petaflop and exaflop computing.

His experience in the supercomputing group was fortuitous, given that Intel’s biggest challenge in the server market is likely to be delivering products for the elite end of high performance computing. Today Intel is the dominant processor supplier for all HPC platforms, from top 10 supercomputers, to clusters, and down to high performance clients. The plan is to continue to do so. “Our objective is to bring to the high performance computing marketplace innovations that drive essentially all of HPC, from the very high end of supercomputing to volume workstations,” Hazra told HPCwire.

Intel’s MIC architecture stands to be a big part of that. Hazra says it will be the basis for its manycore processor design for the next decade and beyond. But first they have to hit a moving target. The rapid ascension of general-purpose GPUs into high performance computing over the last three years has given NVIDIA, and to a lesser extent AMD, a formidable head start.

As of October, the fastest supercomputer in the world, the Tianhe-1A, is a GPU-CPU hybrid. That machine delivers 2.5 petaflops on Linpack, with the vast majority of those FLOPS being supplied by the GPUs. There are a handful of other top 100 GPU-powered supercomputers, and more are on the way. If Intel doesn’t have a viable alternative to the GPGPU juggernaut, its chips will be relegated to the role of supporting player in a lot of future supercomputers, not to mention mainstream clusters and high performance workstations.

Although MIC is a modified x86 implementation and is a completely different architecture from GPGPUs, it is aimed to solve the same problem — namely to get a lot of floating point performance in a very energy efficient package. (For a detailed comparison between MIC and the latest generation Fermi GPU, see Michael Wolfe’s in-depth analysis.) It is also intended to be used in the same manner as a GPU, namely as a floating point accelerator connected to a conventional x86 processor. The common thread is that both architectures are using a high degree of parallelism and simple cores to extract a lot of performance per watt.

That’s a valuable attribute for any HPC platform, but it’s critical for the next generation of multi-petaflop supercomputers. Hazra notes the performance increase in the top 100 supercomputers over the last 10 years was achieved mainly via the scale-out model, that is, adding more processors and more nodes. New CPU architectures changed the slope of the performance per watt curve somewhat, but systems have generally gotten larger, thus consuming more power.

That can’t continue for more than a few more years. It’s not practical to build a 500 petaflop system that consumes 300 megawatts. The conventional wisdom suggests power is going to capped at something between 20 and 40 megawatts for a single machine. So you can’t just ride the performance curve of existing Xeons or Opterons and expect to deliver the required performance for these future systems. “As we look out over the next five to ten years, those systems have some fundamental inflection points,” concedes Hazra.

While Intel intends to deliver the performance per watt similar to that of a GPGPU, it will do so in an x86 framework. Hazra says that will allow applications to transition from single-threaded codes to highly-parallel codes without changing the underlying model. Intel will supply compiler and runtime software support for the product, and if it becomes a commercial success, other vendors, no doubt, will add their products as well. Intel will also provide a common set of development tools to be used across the Xeon and MIC products, such that differences between the two architectures are encapsulated within tools. The goal is to be able to recompile any x86 source and have it automatically spit out MIC instructions.

The idea, of course, is to maximize programmer productivity — and not just for new codes, but also for legacy codes that represent years or even decades of investment. Intel does seem to have an advantage here. Although a Xeon-MIC combo is still a heterogeneous platform, it will be a lot more homogeneous, at least from an instruction set point of view, than say a Xeon-GPGPU platform. Hazra believes that the path they are pursuing with the x86 Intel architecture on both sides will allow them to provide a more balanced heterogeneous system. If Intel can truly deliver a minimally-painful software transition from multicore Xeons to manycore MICs, they will have a compelling HPC accelerator offering. “We believe the MIC architecture will become the workhorse as more and more applications and algorithms are able to take advantage of parallelism,” said Hazra.

The first MIC product, codenamed “Knights Corner,” is to be built with the chipmaker’s 22nm process technology. Given that the 22nm fabs will most likely be used for higher volume chips to start, we probably won’t see the first MIC until sometime in 2012. Knights Corner is supposed to be a 50-core chip, but Intel has not as yet supplied any estimated performance metrics.

Meanwhile, the chipmaker will continue to develop its multicore Xeon line that spans the enterprise and “volume” HPC market. Not every HPC application is going to need manycore acceleration, and for those codes that are more aligned with coarse-grained parallelism or are especially geared toward single-threaded performance, Xeons will be the chip of choice.

The Xeon line will continue to be developed using Intel’s 12-month tick-tock cadence — a process shrink followed by a microarchitecture update — used for its mainstream x86 processors. According to Hazra, though, the MIC cadence will be slower, more like a 18-24 month cadence, although in this case each processor update could encapsulate more significant architectural changes. This schedule aligns closely with the pace NVIDIA and AMD have set with their GPGPU offerings, and is pretty much what one would expect for a relatively low-volume accelerator.

The big unknown is if Intel can deliver the goods in time to reverse the GPGPU momentum. NVIDIA and AMD have a three-year head start, which will be extended to five years by the time the first commercial MIC chips hit the streets. Intel as a company doesn’t need to rely on the success of this manycore product for its success, but its HPC aspirations seem to be tied to it. 2012 is shaping up to be an interesting year.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire