Egyptian Startup Accelerates High Performance Accounting

By Michael Feldman

January 11, 2011

Although Egypt is not exactly the epicenter of high-end computing, a tech startup based in Cairo is looking to make its name in an emerging area of HPC. SilMinds has developed hardware accelerator technology designed to speed up a growing set of financial computing applications. The resulting products represent one of the few hardware-based solutions that support decimal floating point (DFP) math.

SilMinds was founded in 2007 as a research, design and consultancy firm, which is initially focused on providing industry standard IP cores for decimal floating point applications. The company’s chief technology officer, Professor Hossam A.H. Fahmy, was a member of the committee that formulated the IEEE 754-2008 standard for floating point arithmetic, including DFP. According to the SilMinds website, the first products were developed with grant money from the EU-Egypt Innovation Fund.

The company’s initial offering, SilAx, is a configurable vector DFP coprocessor implemented with FPGAs. The card can be equipped with either Altera or Xilinx FPGAs and hooked into any standard PCIe slot with at least four lanes. That makes it compatible with a wide array of x86 servers, HPC or otherwise.

No commercial deployments are yet claimed though. The company is currently talking with solution providers that deal directly with telecom and bank institutions, presumably with the idea of wrapping a complete solution around the SilMinds accelerator and offering it as a turnkey platform.

Keep in mind that decimal floating point operations are a bit of an outlier when it comes to computing. Most applications are performed using binary arithmetic, the natural style of number crunching for microprocessors. Decimal arithmetic can be performed with fixed-point (non-floating point) calculations, but the representations are too limited to support industrial strength money operations.

For example, adding $0.10 to $1.99 is fairly straightforward using fixed-point notation. But even doing something as simple as computing a 10 percent sales tax is problematic, given that 1/10 can only yield an approximate value when converted to binary. Where money is concerned, that’s not a good thing. Round-off errors add up and on a large scale can mean thousands or even millions of dollars end up in the bit bucket.

Decimal floating point, on the other hand, is able to support a much wider range of values than is available for fixed point, and provides much greater precision. Up until fairly recently, there was no encoding standard for DFP. But with the release of the IEEE 754-2008, there is now a vendor-independent specification for 32-, 64- and 128-bit decimal floating point representations and their behavior.

Give the regulatory laws imposed upon financial operations these days, DFP is the standard for nearly all applications in banking, telephone billing, tax calculation, currency conversion, insurance, and risk management. Now with the growing streams of real-time financial transactions zipping around the globe, performance and power efficiency have become looming issues. Some estimate that as much as one-third of the world’s server infrastructure is crunching financial data of some sort.

Demand for even more DFP capability appears poised to take off. Mobile networks are becoming ubiquitous across the globe, which should accelerate the need for real-time billing. Cell phones will soon be used as smart credit cards, able to initiate real-time payments at restaurants, movie theaters, and for a variety of other services (This is already in the works in Europe and Asia.). Smart energy grids are also being planned, which will require an extensive infrastructure to compute spot energy pricing. All these applications will require large-scale DFP.

How much demand actually exists for high performance DFP is anyone’s guess. But SilMinds is trying to position itself squarely in the path of this emerging space. So far, competition is minimal. Other than SilMinds, only IBM has decimal floating point implemented in hardware — in this case its z series computers (z9 and z10) as well as its Power6 and Power7 processors. But those solutions are rather expensive compared to a vanilla x86 server equipped with a SilMinds card.

Hardware is the key to performance, as well as power efficiency. Although DFP software libraries exist, they are relatively slow when it comes to compute-intensive DFP applications like large-scale telephone billing. SilMinds has tested its FPGA-based card solution using IBM’s Telco Billing benchmark and reported a 6X speedup compared to a software implementation on a 3 GHz x86 platform. “For other applications we expect that overall speedups will range from 4 to 5x up to 15x” said Assem El Gamal, SilMinds Design Manager. According to him, the variance depends on how much of the application is spent doing decimal floating point computations. In the case of the Telco benchmark, a fair amount of application run time is spent on disk I/O.

When looking at the performance of the DFP calculations in isolation, the results are even more impressive. SilMinds claims an 80X speedup for the core computation, with greater performance possible if the application can benefit from multiple cards.

Using an FPGA-based approach means the solutions can be customized to squeeze the optimal performance from the application. The hardware is implemented in VHDL code, which is designed, written and maintained by SilMinds. Customers tap into the low-level functionality of the accelerator via a set of provided application programming interfaces (APIs); they are not required to write any VHDL code themselves.

Multiple FPGAs per card and multiple card architectures are under study to support multiprocessing and virtualization, with many simultaneous application instances being afforded the maximum speedup needed by each to achieve maximum server resource savings. SilMinds speculates that datacenter TCO and energy saving could be reduced by 80-90 percent. Also under investigation is a network-centric acceleration architecture that could support SaaS and cloud computing.

A DFP ASIC is in the works as well, which according to SilMinds, has already been validated. The idea here is to get the ultimate in performance, sans the reconfigurability of the FPGA. Also on the horizon is a compiler that will generate the appropriate low-level parallel computations without the need for extensive API calls.

With other HPC technology focused on binary floating point capabilities to support scientific applications, the needs of performance-demanding DFP users have largely gone unserved. Financial regulatory requirements, a new floating point standard, and an expanding application space could propel SilMinds and their market into the limelight.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire