Cloud to Improve Genomic Research at Spanish National Cancer Research Centre

By Paul Parsons and Alfonso Olias

January 13, 2011

Over the last few years, a new global trend has emerged in the field of genomic studies. With the advent of a new generation of analytical instruments, the cost of determining the order of the nucleotides in a DNA molecule (DNA sequencing) has dramatically decreased, resulting in a significant acceleration of a number of basic and applied related biomedical areas.

While a typical sequencing project (de novo determination of an organism genome, for example) used to last several years and millions of dollars in reagents and resources, nowadays even small laboratories are able to sequence the complete genomes of simple organisms in hours, for just a small fraction of the cost.

Big sequencing projects have shifted to the determination of the specific sequences of populations of individuals, which will give us the ability to associate the differences at the sequence level between them (variants) to specific individual traits (those causing diseases like cancer, for example). Consequently, the bottleneck in sequencing projects has shifted from obtaining DNA reads to the alignment and post-processing of the huge amount of read data now available.

To minimize both processing time and memory requirements, specialized algorithms and high-throughput analysis pipelines are being constantly developed.

The need to analyze increasingly large amounts of genomics and proteomics data has meant that research institutions such as the Spanish National Cancer Research Centre (CNIO) allocate an increasing part of their time and budget provisioning, managing and maintaining their scientific computing infrastructure, areas that not their core business.

The Server Labs, a European IT company focused on IT architectures, software engineering and cloud architecture and services, is working with the Bioinformatics Unit, Structural Biology and Biocomputing Programme at CNIO, to develop a cloud-based solution that would meet their genomic processing needs.

With its pay-per-use concept CNIO would benefit from the Cloud saving time and money maintaining and upgrading their internal IT department. Fixed costs will be translated to variable costs in terms of infrastructure, purchases and upgrades of computational resources, software licenses, as well as expert admins and external resources. 

As the number of sequencing experiments which the CNIO runs can also be variable, the cloud not only eliminates potential over-provisioning, but it also prevents the under-provisioning of resources at peak times, which would result in the inability to run scheduled experiments. CNIO is thus able to pass on the risks associated with the planning and allocation of resources to the cloud provider.

Without the need to provide and manage computational resources themselves, CNIO can focus on their core business, scientific research in genomics and proteomics applied to cancer. In addition to providing the elasticity to run experiments on an on-demand basis the cloud also reduces the time to supply the hardware infrastructure and its configuration based on an automated installation and customization of the software running on top of the hardware. A controlled computational environment for the post-processing of experiments allows results to be more easily reproduced, a key objective to researchers across all disciplines.

Data management cloud services facilitate publishing of data over the Internet enabling researchers to easily share results whilst controlling their access. Data storage in the Cloud was designed from the ground-up with high-availability and durability as key objectives.

By storing their experiment data in the cloud, researchers can ensure their data is safely replicated among data centres. These advantages free researchers from time-consuming operational concerns, such as in-house backups and the provisioning and management of servers from which to share their experiment results.

The vast potential benefits of the cloud will enable the Spanish National Cancer Research Centre to speed up its pace of innovation and bring them a faster ROI on their current research efforts.

An Environment for Genomic Processing in the Cloud

The first step towards carrying out genomic processing in the cloud is to identify the requirements that fulfill a suitable computational environment. These include the hardware architecture, the operating system and the genomic processing tools. Together with CNIO we identified the following software packages employed in their typical genomic processing workflows:

  • Burrows-Wheeler Alignment Tool: BWA aligns short DNA sequences (reads) to a reference sequence such as the whole human genome.
  •  Novoalign: Novoalign is a DNA short read mapper implemented by Novocraft Technologies. The tool uses spaced-seed indexing to align either single or paired-end reads by means of Needleman-Wunsch algorithm. The source code is not available for download. However, anybody may download and use these programs free of charge for their research and any other non-profit activities as long as results are published in open journals.
  • SAM tools: After reads alignment, one might want to call variants or view the alignments against the reference genome. SAM tools is an open-source package of software applications which includes an alignments viewer and a consensus base caller tool to provide lists of variants (somatic mutations, SNPs and indels).
  • BEDTools: This software facilitates common genomics tasks for the comparison, manipulation and annotation of genomic features in Browser Extensible Data (.BED) format. BEDTools supports the comparison of sequence alignments allowing the user to compare next-generation sequencing data with both public and custom genome annotation tracks. BEDTools source code in freely available.

Note that, except for Novoalign, all software packages listed above are open source and freely available.

For our initial proof of concept, we decided to run a configured image with Ubuntu 9.10 x64. This ensures that no additional setup tasks are required when launching new instances in the Cloud, and provides a controlled and reproducible environment for genomic processing.  The Amazon EC2 instance type required was a large instance with 7.5 GB of memory, 4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units each) and 850 GB of local instance storage.

With this minimum set up we executed some typical genomic workflows suggested to us by CNIO. We found that for their typical workflow with a raw data input between 3 and 20 GB, the total processing time on the cloud would range between 1 and 4 hours, depending on the size of the raw data and whether the sequencing experiment was single or paired-end. With an EC2 instance pricing at 38 cents per hour for large instances, and ignoring additional time required for customization of the workflow, the cost of pure processing tasks totalled less than $2 for a single experiment.

CNIO’s genomic facilities are able to process up to 20-25 sequencing runs in an Illumina GAII sequencer. On average, they expect to analyse about 150 sequencing lanes per year, generating each 30 gigabyte of entry data (average), and totalling up to 3-4.5 terabytes in storage / processing requirements p.a.

We also found the processing times to be comparable to running the same workflow in-house on similar hardware. However, when processing in the cloud, we found that transferring the raw input data from the lab to the Amazon cloud could become a bottleneck, depending on the bandwidth available. We were able to work around this limitation by processing our data on Amazon’s European data centre and avoiding peak-hours for the data uploads. In future a high-speed file-transfer protocol such as Aspera’s could be leveraged to optimize this step.

Maximizing the Advantages of the Cloud

We demonstrated that genomic processing in the Cloud is feasible and cost-effective, while providing a performance on par with in-house hardware. The true benefits of the cloud will become apparent when processing tens or hundreds of experiment jobs in parallel. This would allow researchers, for instance, to run algorithms with slightly different parameters to analyse the impact on their experiment results. At the same time, the resulting framework should incorporate all of the strengths of the cloud, in particular data durability, publishing mechanisms and audit trails to make experiment results reproducible.

For more detailed information please have a look at The Server Labs’ technical blog.
 

—–

Paul Parsons is CTO and chief architect at The Server Labs, Alfonso Olias, also from The Server Labs serves at Senior Consultant.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire