The Weekly Top Five

By Tiffany Trader

January 13, 2011

The Weekly Top Five features the five biggest HPC stories of the week, condensed for your reading pleasure. This week, we cover the Intel-NVIDIA cross-licensing agreement, the arrival of a Cray supercomputer at Colorado State, advancements in the understanding of storage materials, the latest batch of AAAS Fellows, and UW-Madison’s new HPC cluster.

Intel, NVIDIA Ink Cross-Licensing Agreement

In what is arguably the biggest story this week, representatives from Intel and NVIDIA have hammered out a six-year cross-licensing deal. Intel has agreed to pay NVIDIA $1.5 billion in licensing fees divided into five annual payments, the first due Jan. 18, 2011. The two chipmakers have also agreed to drop all outstanding legal disputes.

In a prepared statement, Jen-Hsun Huang, NVIDIA’s president and chief executive officer, said: “This agreement signals a new era for NVIDIA. Our cross license with Intel reflects the substantial value of our visual and parallel computing technologies. It also underscores the importance of our inventions to the future of personal computing, as well as the expanding markets for mobile and cloud computing.”

For an in-depth explanation, look no farther than HPCwire Editor Michael Feldman’s coverage.

For the time-starved, here’s the meaty bit:

In a nutshell, the agreement provides cross-licensing access to each other’s patents. However, it’s not a license to repurpose one another’s chip designs; rather its an understanding not to sue each other when they bump up against their competitor’s patents. This is important because both NVIDIA and Intel own rich patent portfolios that apply to many areas of computing. Without such an understanding, it’s nearly impossible for engineers to design anything without inadvertently stepping into someone else’s territory. It gives both parties the freedom to build CPUs, GPUs, and everything in between without having to worry about who came up with the original ideas.

Cray Provides CSU with New Supercomputer

Colorado State University has a shiny new Cray supercomputer, thanks to a National Science Foundation grant, worth $627,326. The ISTeC High Performance Computer, made possible by stimulus funding, will provide university researchers with platform for advanced modeling, simulation and analysis at higher levels than were previously available.

According to the official announcement, “the system will support much larger and more complex problems in science and engineering, especially for data intensive applications; add greater physical fidelity to existing models; facilitate application of computing to new areas of research and discovery; and support training to attract new researchers to computational science, engineering and mathematics.”

The midrange Cray XT6m supercomputer has 1,248 cores, 1.6 terabytes of main memory, and 32 terabytes of disk storage. Colorado State researchers plan to use the system for a diverse assortment of data- and compute-intensive applications, among them ultraviolet laser design, weather forecasting, bioinformatics, atmospheric modeling, network traffic analysis, and robotics.

A reception will take place Friday to celebrate the supercomputer’s debut.

DVD Storage Mechanism Revealed

Scientists at Forschungszentrum Jülich, working in tandem with researchers from Finland and Japan, have solved a DVD mystery — not some murder mystery, but the mysterious workings of the DVD storage format itself. The physical basis for the storage mechanism was not previously understood in detail despite the disk’s ubiquity. The team’s findings, published in the current issue of the journal Nature Materials, provide insight into the read and write processes in a DVD.

Using the JUGENE supercomputer as well as the Japanese synchrotron SPring-8, the world’s most powerful x-ray source, the researchers were able to determine the structures of both storage phases for the first time and develop a model that explained the rapid phase change.

From the announcement:

Some 4,000 processors of the Jülich supercomputer JUGENE were used for over four months in order to obtain the necessary precision. In addition to sheer computing power, however, experience in scientific computing and the simulation of condensed matter is essential. [Dr. Robert] Jones [of Forschungszentrum Jülich] notes: “Forschungszentrum Jülich is one of the few places where all these aspects come together.”

The new knowledge is expected to lead to storage media with longer life, larger capacity, or shorter access times.

AAAS Announces New Fellows

This week, the American Association for the Advancement of Science (AAAS) made public its yearly selection of fellows. A total of 503 recipients were named from more than 220 institutions worldwide, including 16 designated with an “Information, Computing, and Communication” affiliation. The honor recognizes individuals who have made significant contributions to the advancement of science and technology. The newly-inducted fellows will be presented with a certificate and a blue and gold rosette pin at the Fellows Forum on Feb. 19 2011, held during the AAAS Annual Meeting in Washington, D.C.

Many academic institutions have released their own announcements, naming faculty members who have been hand-picked for this prestigious group. Among them are the University of Tennessee, Knoxville, the Pacific Northwest National Laboratory, and Louisiana State University. You can read about the selection process here.

UW-Madison Cluster Enlisted to Fight Pollution

Several University of Wisconsin-Madison departments banded together to bring a new HPC cluster to campus. The Euclid cluster, now the largest at UW-Madison, harnesses the power of many computers at once in order to run large-scale computing jobs more quickly. It can also move large datasets and files at high speeds among the cluster’s individual servers.

Euclid was the result of over nine months of planning involving a partnership of several campus departments with vendor assistance coming from Dell, Cisco, Chelsio and APC. The cluster has 261 servers, almost 2,100 Intel Nehalem computer cores, and 13 terabytes of central storage. A peak theoretical performance of 19 teraflops gives Euclid the power of 1,000 average desktop computers. The system’s high-bandwidth, low-latency 10 Gigabit Ethernet interconnect allows for efficient communication between the various servers.

While Euclid was designed to tackle the usual array of HPC applications, such as weather modeling, high energy physics, bioinformatics, and materials design, it is primarily being used for materials science, specifically in the design of novel catalytics, under the direction of professor Manos Mavrikakis. The professor’s research group uses computational chemistry approaches to improve engineering practice in a variety of areas, including chemical processing, alternative energy and pollution prevention. The group is part of worldwide effort to uncover the next generation of catalytic materials and has published its findings in Science, 329, 1633 (2010).

Additional background information is available here.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire