ARM Processors Set to Challenge x86 On Its Own Turf

By Michael Feldman

February 2, 2011

The dominance of the x86 in desktop machines, servers, and supercomputers will soon be challenged by the ARM microprocessor. That according Tudor Brown, ARM Holdings’ president and co-founder, who this week took a few shots at the x86 dynasty. Brown’s comments and recent events suggest future ARM-based processors could form a credible threat to high-end CPUs made by AMD and Intel.

Brown’s comments this week, which appear in a MarketWatch report, reiterate the company’s plans to design higher end microprocessors aimed at the desktop and server market, the current stronghold of the x86. According to the him, ARM’s superior energy efficiency is now especially sought after in the datacenter.

From the MarketWatch article: “ARM continues to develop efficient products in terms of power consumption and performance that’s very good for the mobile space,” said Brown. “Those same credentials are appropriate for as we move to servers and high-performance computing.”

ARM is a huge player in the mobile computing space, and is especially well entrenched in the fast-growing tablet market, where the architecture enjoys a 95 percent share. When total shipments are considered, ARM outruns x86 by about a 10-to-1 margin. In 2010, more than 6 billion ARM-based processors were sold, and that number is projected to grow to 8 or 9 billion over the next three years.

Volume is critical since it drives down chip costs and attracts software providers, who, for obvious reasons, prefer to sell their wares on the most widely deployed architectures. In fact, it was the economics of volume that allowed the x86 to attack the server and HPC market from below, displacing higher-end RISC offerings, not to mention Intel’s home-grown Itanium CPU.

Berkeley computer science professor and RISC pioneer Dave Patterson thinks RISC is due for a comeback though. In a recent blog posted on the ARM Holdings website, Patterson argues that the “PostPC” era will see a return to the simpler, more efficient designs of RISC architectures:

“The importance of maintaining the sequential programming model combined with the increasingly abundant number of transistors from Moore’s Law led, in my view, to wretched excess in computer design.” he writes. “Measured by performance per transistor or by performance per watt, the designs of the late 1990s and early 2000s were some of the least efficient microprocessors ever built. This lavishness was acceptable for PCs, where binary compatibility was paramount and cost and battery life were less important, but performance was delivered more by brute force than by elegance.”

It’s not just about shipment volumes and computational efficiency though. ARM has a very different business model than the x86 vendors — one that allows a lot more players into the game. Unlike Intel and AMD, ARM Holdings licenses its microprocessor designs to other vendors, who build the actual processors or devices and pay royalties to ARM in addition to licensing fees. Although Intel Corporation dwarfs ARM Holdings in employee count and revenue, if you include the 200-odd companies that build products with ARM intellectual property, the situation is reversed.

Currently, ARM processors lack a foothold on the desktop and server. But the company’s next-generation Cortex-A15 chip is certainly a step in that direction. Although still essentially a 32-bit design, the A15 adds double-precision floating point support, a 128-bit SIMD engine (NEON), a 1 TB address reach, ECC on cache, virtualization support, as well as much better performance than the current Cortex-A9 generation. The design allows for a 4-way SMP cache-coherent processor, with the possibility for up to 8 cores (or perhaps even 16 cores) to be supported using the CoreLink CCI-400 interconnect. The first A15 products are expected to be delivered sometime in 2012.

ARM is targeting the A15 architecture to everything from smartphones and tablets to network routers and low-power servers. Energy efficiency is the big selling point here. In ultra-scale datacenters aimed at Web search, social media, media serving, and essentially any throughput-intensive application, energy usage is a critical cost. For the same reason, high performance computing facilities are also energy constrained, encouraging HPC users and vendors to search for lower power alternatives to the x86.

The initial chipmaker to latch onto ARM for high-end computing is NVIDIA, who announced its intentions to marry future ARM CPUs with “Maxwell” generation GPU cores on the same chip. Those parts are slated to end up in desktops, servers, and supercomputers, and compete head-on with x86-based offerings from Intel and AMD. At this point, it’s not clear if NVIDIA intends to use the A15 as the basis for its first CPU-GPU processors or wait for a full 64-bit capable ARM architecture, which at this point is still under wraps.

Although NVIDIA is the first vendor to reveal its plans to build ARM-flavored chips for the server market, there’s nothing to prevent other vendors from following suit. It’s not unreasonable to imagine firms like Texas Instruments or Samsung making ARM server parts for this lower volume (but higher margin) market. Because of the open licensing model, an ARM-based server business could provide a much greater diversity of offerings than would be possible from the current x86 duopoly.

In HPC, companies that want to stake out a niche with custom FP accelerators (think ClearSpeed-like vendors) might consider an ARM-SIMD hybrid chip analogous to NVIDIA’s ARM-GPU processor. SiCortex-like companies could design ultra-low power HPC machines by tweaking the ARM design for their own purposes, or even second-sourcing existing ARM server chips. Since manycore programming frameworks like the open standard OpenCL (and the closed standard CUDA) are now available, these same companies can offer software stacks that leverage the growing software base built on top of these APIs.

Of course, AMD and Intel are not about to let ARM’s expansion go unchallenged. In fact as ARM prepares to move up the food chain into x86 markets, AMD and Intel are moving into the low-power space, with Bobcat and Atom, respectively. Especially as smartphones and tablets eat into the desktop/laptop space, the x86 makers are following their customers’ demands.

Intel, in particular, with its x86-compatible Atom processors built for low-power mobile computing, already has an architecture that is at least as capable as the current crop of ARM processors in performance, although not quite as impressive in the energy efficiency department. But given Intel’s considerable R&D heft and superior chip manufacturing capability, the company has a decent chance of taking the battle to ARM at the low end as well as defending its high-end territory.

ARM’s largest weakness in the desktop and server space is software. Although Microsoft just announced it will support ARM on Windows 8, the architecture has a big stack of software to swallow before it can reach parity with x86, especially in the server arena. None of this is insurmountable for ARM proponents, and we may be at a point where the business model of chip making and shifting customer demands now favor the little guys.

On the other hand, Intel and AMD have been pushing past their RISC challengers for nearly three decades, from the PowerPC to Sparc. Over the next few years we’ll see if the x86 juggernaut has run out of steam or if it can prevail at least one more time.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire