Azure Use Case Highlights Challenges for HPC Applications in the Cloud

By Vedaprakash Subramanian; Hongyi Ma; Liqiang Wang; En-Jui Lee; Po Chen

February 21, 2011

Currently, HPC has been making a transition to the cloud computing paradigm shift. Many HPC users are porting their applications to cloud platforms. Cloud provides some major benefits, including scalability, elasticity, the illusion of infinite resources, hardware virtualization, and a “pay-as-you-go” pricing model. These benefits seem very attractive not only for general business tasks, but also for HPC applications when compared with setting up and managing dedicated clusters. However, how far these benefits pay off in terms of the performance of HPC applications is still a question.

We recently had the experience of porting an HPC application, Numerical Generation of Synthetic Seismograms, onto Microsoft’s Windows Azure cloud and have generated some opinions to share about some of the challenges ahead for HPC in the cloud.

Numerical generation of synthetic seismogram is an HPC application that generates seismic waves in three dimensional complex geological media by explicitly solving the seismic wave-equation using numerical techniques such as finite-difference, finite-element, and spectral-element methods. The computation of this application is loosely-coupled and the datasets require massive storage. Real-time processing is a critical feature for synthetic seismogram.

When executing such an application on the traditional supercomputers, the submitted jobs often wait for a few minutes or even hours to be scheduled. Although a dedicated computing cluster might be able to make a nearly real-time response, it is not elastic, which means that the response time may vary significantly when the number of service requests changes dramatically.

Given these challenges and due to the elastic nature of the cloud computing, this seems like an ideal solution for our application, which provides much faster response times and the ability to scale up and down according to the requests.

We have ported our synthetic seismogram application to Microsoft’s Windows Azure. As one of the top competing cloud service providers, Azure provides Platform as a service (PaaS) architecture, where users can manage their applications and the execution environments but do not need to control the underlying infrastructure such as networks, servers, operating system, and storage. This helps the developers focus on the applications rather than manage the cloud infrastructures.

Some useful features Windows Azure for HPC provides for applications include the automatic load balancing and checkpointing. Azure divides its storage abstractions into partitions and provides automatic load balancing of partitions across their servers. Azure monitors the usage pattern of the partitions and servers and adjusts the grouping or splitting of workload among the servers.

Checkpointing is implemented using progress tables, which support restarting previously failed jobs. These store the intermediate persistent state of a long-running job and record the progress of each step. When there is failure, we can look at the progress table and resume from the failover. The progress table is useful when a compute node fails and its job is taken over by another compute node.
 
Challenges Ahead for HPC in the Cloud

The overall performance of our application on Azure cloud is good when compared to the clusters in terms of the execution time and storage cost. However, there are still many challenges for cloud computing, specifically, for Windows Azure.

Dynamic scalability – The first and foremost problem with Azure is that the scalability is not up to the expectation. In our application, dynamic scalability is a major feature. Dynamic scalability means that according to the response time of the user queries, the compute nodes are scaled up and down dynamically by the application. We set the threshold response time to be 2 milliseconds for queries. If the response time of a query exceeds the threshold, it will request to allocate an additional compute node to cope up with the busy queries. But the allocation of a compute node may take more than 10 minutes. Due to such a delay, the newly allocated compute node cannot handle the busy queries in time. 

These scheduling delays are real concern, which leads to the need of effective and dynamic load management system in order to react in time to the changes of the HPC application requirements. In the other direction, the application scales down the compute nodes if some compute nodes do not have any user queries. The de-allocation of compute nodes on Azure is an asynchronous process. It means that Azure randomly picks one of the compute nodes and de-allocates it. So, the application cannot process the user queries until the de-allocation process is complete, which may slow down the performance.

Low-level control to optimize performance – We did not have good control over the compute nodes. Our application reads user query, splits the job into sub-jobs among compute nodes. Each compute node requests for a set of data from the storage depending on its sub-jobs. If the next user’s query is the same, will the previous set of data be reused? Or will the same process be executed thoroughly again, i.e., request the same set of data from the storage again and do the computation? If each request to the storage takes a latency delay of 15 milliseconds, then will it cost the same latency again?

Even if we move the data from the cloud storage to local storage provided by the compute node to prevent latency delay, there is no guarantee that the next user’s query will be serviced by the same compute node. Because of lacking of low-level control, it is difficult to fully exploit the compute node capacity and maximize the data locality.

Multi-tenancy – We are not sure about how far the compute nodes are dedicated for the application.  As one of the major features of cloud, multi-tenancy is an issue for the application. Multi-tenancy means sharing of the compute nodes among multiple applications. As the number of applications running on the same compute node increases, it will reduce the amount of bandwidth allocated to each application. This might lead to performance degradation over time.

Reliability and fault-tolerance – Reliability is also another concern. On Windows Azure, it is still unknown that how long it takes to replace a failed compute node with a new one. Additionally, it is unclear how hardware failures impact on the performance of the application. These impacts are needed to be studied and taken into consideration while developing the load management system. On PaaS architecture, one of disadvantages is that testing the application against fault tolerance and compute node failures are quite difficult.

Debugging and profiling – Although Windows Azure programs can be developed and debugged locally, Azure’s architecture does not support remote debugging. This might be a problem to develop and deploy complex applications on Azure. Parallel and remote debugging has always been a problem for developing HPC programs. It will be a new issue on cloud computing. Efficient error detection tools, including tracing and replaying, should be provided by cloud computing vendors. Like the traditional HPC platforms, light-weight profiling tools will be very useful for analyzing and tuning performance, which are still missed for the most current cloud computing platforms.

Conclusions

Thus far, we have tried to pinpoint some of the challenges ahead for HPC in the cloud, specifically, Windows Azure. Windows Azure provides a black box architecture which lacks of flexibility to optimize the performance. Some low-level controls are needed for the HPC users to improve the performance of their applications. Though these challenges are based on Azure, they are also applicable for general cloud computing platforms.

About the Authors

Vedaprakash Subramanian is a Master student in the department of Computer Science at University of Wyoming. He received his Bachelor’s degree in Electrical and Electronics at PSG College of Technology, India in 2009. His research focus is in utilizing cloud platform for HPC application and, HPC program reliability, and performance optimization. He is currently working on porting applications for computational seismology to cloud platforms such as Azure and Amazon EC2.

Hongyi Ma is a PhD student in the Department of Computer Science at University of Wyoming. He got his Bachelor’s degree in Computer Science at University of Science and Technology of China, Hefei, China in 2010. His research includes HPC, Programming Errors Detecting.

Liqiang Wang is currently an Assistant Professor in the Department of Computer Science at the University of Wyoming. He received the BS degree in mathematics from Hebei Normal University, China, in 1995, the MS degree in computer science from Sichuan University, China, in 1998, and the PhD degree in computer science from Stony Brook University in 2006. His research interest is the design and analysis of parallel computing systems including cloud computing.

En-Jui Lee is currently a PhD student in the Department of Geology and Geophysics at the University of Wyoming. He received the BS degree in Earth Sciences from National Cheng Kung University, Taiwan, in 2003, and the MS degree in Geological Sciences from SUNY Binghamton University in 2009. His research interest is in computational seismology.

Po Chen is currently an Assistant Professor in the Department of Geology and Geophysics at the University of Wyoming. He received the BS degree in Geophysics from Peking University, China, in 2000, and the PhD degree in Geological Sciences from University of Southern California in 2005. His research interest is in computational seismology.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire