The HPC Gap in US Manufacturing

By Michael Feldman

February 24, 2011

Using high performance computing to help modernize US manufacturing is one of those good ideas that seems inevitable but always just out of reach. A recent study confirms this, and provides a framework for strengthening the HPC landscape in this sector.

Of course some might ask what’s the point of trying to boost manufacturing in the US when the sector only employs about 10 percent of the workforce, a figure that is projected to decline further in the coming years. Also, the use of HPC to make manufacturing more efficient is not likely help the downward employment trend. Employing virtual product design and development and automating other manufacturing processes will probably eliminate more jobs than it creates.

By world standards, the US manufacturing market is already fairly efficient. Despite the relatively few workers employed in the segment, because of its sheer size, US manufacturing dominates world production. Output in 2009 was $2.15 trillion (expressed in 2005 dollars), besting China’s contribution of $1.48 trillion and representing about 20 percent of the world’s manufacturing output.

But the real value of the US manufacturing sector is that it’s at the heart of much of the science and engineering innovation on which the remainder of the economy rests. Today US manufacturers employ more than a third of the country’s engineers and account for 60 percent of all private sector R&D. As such, it creates products that are used by the more lucrative service industries. Think, for example, of all the myriad services that are dependent on the production of computer chips and other electronic devices. Manufacturing, like agriculture before it, is a foundational activity that acts as a catalyst to other business sectors.

Furthermore, according to a recent article in The Atlantic, there is no realistic way to balance US foreign trade that relies exclusively on the service sector. Nor is there a feasible way to employ existing (and future) blue-collar workers without a healthy manufacturing sector.

And healthy it is not — at least from a global perspective. Based on a survey of CEOs conducted by Deloitte and the Council on Competitiveness released in June 2010, the US is ranked fourth in manufacturing competitiveness, behind China, India, and South Korea, and is expected to drop to fifth place, behind Brazil, by 2015. A National Institute of Standards and Technology factsheet recounts the need for the industry to focus on developing technologically-advanced products that can compete in the global marketplace. “There is widespread agreement that rather than engage in a ‘race to the bottom’ for low-wage production facilities, the United States should aim for high-value-added manufacturing opportunities,” says the factsheet.

Moving up the manufacturing foodchain often leads to a much better bottom line, and in some cases, extra jobs. For example, Frank van Mierlo, CEO of 1366 Technologies, claims that the US is in a good position to build a silicon chip industry for solar cells. According to Mierlo, the nation produces around 40 percent of the world’s high grade silicon for both chips and solar cells, which is worth about $1.7 billion. He says if US-based companies turned that silicon into wafers, it would become a $7 billion business and add 50,000 jobs.

That kind of thinking is being embraced by non-profit groups as well. US government agencies, the Council on Competitiveness, and the National Center for Manufacturing Sciences (NCMS) are all big proponents of high-tech solutions. HPC, in particular, is seen as a key driver in upgrading the nation’s manufacturing capabilities. The use of such technology allows engineers and designers to perform prototyping, product design and analysis, product lifecycle management, and product optimization/validation, with much less reliance on physical mockups and testing.

But despite better access to HPC than is generally available in other countries, in the US fewer than 10 percent of manufacturers use this technology — that according to a recent study conducted by InterSect360 Research in conjunction with NCMS. The report surveyed 323 respondents across industry, academic, government and trade organizations in July 2010 to gather a snapshot of digital manufacturing practices and attitudes in the US.

Source: http://www.nas.nasa.gov/SC08/HPT.htmlNot surprisingly it found that top manufacturers were already major users of high performance computing. Based on the survey, 61 percent of companies with over 10,000 employees are using HPC today to model everything from engine parts to product packaging. The numerous case studies of digitally-engineered products at companies like Boeing, Procter & Gamble, and General Motors attest to the acceptance of HPC at these large firms.

Meanwhile, small manufacturers, which by number represent the vast majority of the companies in this sector, have barely touched the surface of high performance computing. Here only 8 percent of businesses with under 100 employees are using such technology. Where modeling and simulation tools are being employed, they’re mostly restricted to desktop systems, representing a sort of poor man’s HPC.

The study found the most significant barriers to adoption were the lack of internal expertise, the cost of software, and to a lesser extent, the cost of hardware. To some degree, though, cost concerns may be a misconception. Over 80 percent of companies that currently use HPC report they spent less than one-third of their IT budgets on HPC — not an insignificant amount, but not an overwhelming expense either.

Importantly, 72 percent of desktop-bound CAE users did see a competitive advantage in adopting more advanced computational technology. In such environments, long simulation times and other software issues (compatibility, robustness, data management) were cited as major limitations.

When asked about the importance of different business drivers — production efficiency, time to market, product novelty, product quality, industry leadership, etc. — the survey takers said all were important, but it was product quality that garnered the most intense response. Since HPC enables iterative product refinement in a virtual design and test environment, that could turn out to be a big selling point for the technology.

In manufacturing, as in most verticals, smaller companies tend to be at a disadvantage when it comes to adopting HPC, and this is certainly reflected by the InterSect360 study. But costs, at least of hardware, are coming down. And software costs, while more worrisome, would likely be no more expensive (or at least not substantially more) on an eight-node cluster than on eight standalone workstations.

What most of these manufacturers require is a low-risk path that allows them to segue into high performance computing. Whether that turns out to be partnerships with HPC-savvy organizations, system vendors who can understand and cater to low-end HPC users, or something else remains to be seen. What seems much more certain is the need for manufacturers in the US to be able to compete at the high end of the market with superior quality products. To do that, companies will need to accept HPC as a foundational technology for their businesses.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire