The Weekly Top Five – 02/24/2011

By Tiffany Trader

February 24, 2011

The Weekly Top Five features the five biggest HPC stories of the week, condensed for your reading pleasure. This week, we cover Cray’s first XMT-2 supercomputer order, University of Delaware researchers’ extreme-scale architecture breakthrough, AMD’s OpenCL University Kit, Platform’s Grid Engine migration program, and PGI’s 2011 product refresh.

CSCS First to Order Cray XMT-2 Supercomputer

Cray has received its first order for a supercomputer based on its next-generation XMT architecture. The contract was awarded by the Swiss National Supercomputing Centre (CSCS) in Manno, Switzerland, and the announcement was made to coincide with a CSCS-hosted workshop focused on large-scale data analysis. Fitting since that’s exactly the kind of workload CSCS has planned for the system.

CSCS is no stranger to Cray systems. The organization was the recipient of the first-ever Cray XE6 system and is also home to a Cray XT5 supercompter, referred to as “Rosa.” The upcoming addition, expected to arrive later this year, will be part of a new project at CSCS called EUREKA, which matches Swiss scientists with dedicated resources for large-scale data analysis services. According to the release, “the proposed facility will be used for large-scale analysis of unstructured data and data mining, and is designed for parallel applications that are dynamically changing, require random access to shared memory and typically do not run well on conventional systems.”

The Cray XMT supercomputer features a massive, multithreaded architecture to support “data-driven problems that exist in unrelated and diverse data sets.” Each processor can handle up to 128 concurrent threads and the system can scale from 16 processors up to multiple thousands of processors.

University of Delaware Researchers Hope to Redesign Supercomputer

Guang Gao and a team of researchers at the University of Delaware are working to achieve breakthroughs in supercomputing that they hope will lead to a new generation of systems. The group is focused on improving the speed, efficiency and computational capacity of extreme-scale systems.

Gao, a distinguished professor of Electrical and Computer Engineering, is an expert in computer architecture and parallel systems. He and his team are taking part in a research and development initiative put forth by the Defense Advanced Research Projects Agency (DARPA) “to create an innovative, revolutionary new generation of computing systems” under DARPA’s recently-announced Ubiquitous High Performance Computing (UHPC) program. The University of Delaware researchers are members of the Intel Corporation UHPC team, which is focused on creating the next-generation of hardware and software technologies for extreme-scale computing systems. Other members of the Intel team are based at the University of Illinois at Urbana Champaign, the University of California at San Diego, Reservoir Labs Inc. and E.T. International, Inc. (ETI).

Gao comments on the significance of the undertaking: “This is a very important event for the nation. This project will develop a supercomputer that puts the United States ahead of our competitors. But with that comes a lot of responsibility.”

The project participants understand the need to develop a different kind of architecture, to enable a true breakthrough in parallelism instead of just stringing more and more cores together. To that end, the announcement states that UHPC program recognizes that “a new model of computation or an execution model must be developed that enables the programmer to perceive the system as a unified and naturally parallel computer system, not as a collection of microprocessors and an interconnection network.”

Such a redesign is paramount to our nation’s economic and military competitiveness. DARPA, a department of defense group, understands that very well. It is thought that this “radically new” architecture will allow applications to perform 100 to 1,000 times better than current models. Another goal is to enable parallel software design, to make it less difficult.

Prototypes of these UHPC systems are scheduled to be ready by 2018.

AMD Launches OpenCL University Kit

This week AMD introduced the OpenCL University Kit to assist universities in teaching a semester course in OpenCL programming. OpenCL (Open Computing Language) is an open standard for parallel programming of heterogeneous platforms including GPUs, multicore CPUs and other processors.

From the announcement:

This effort underscores AMD’s commitment to the educational community, which currently includes a number of strategic research initiatives, to enable the next generation of software developers and programmers with the knowledge needed to lead the era of heterogeneous computing. OpenCL, the only non-proprietary industry standard available today for true heterogeneous computing, helps developers to harness the full compute power of both the CPU and GPU to create innovative applications for vivid computing experiences.

The University Kit includes a 13 lecture series complete with instructor and speaker notes, and code examples. Course participants need not already be proficient in OpenCL programming, however basic knowledge of C/C++ programming is recommended. Students will need a C/C++ compiler and an OpenCL implementation, such as the AMD APP SDK, to complete the exercises. For additional information, including a listing of educational institutions now offering courses in OpenCL programming, click here.

AMD also announced that it will be holding its first AMD Fusion Developer Summit from June 13-16 in Seattle, Washington.

Platform Offers Migration Path for Grid Engine Users

Platform Computing has released a migration program for Grid Engine users aimed at easing the transition to one of Platform’s workload management systems, either Platform HPC, an HPC cluster solution, or Platform LSF, a comprehensive HPC workload management platform.

Presumably, Platform developed the migration tool in response to Oracle’s December announcement that it was discontinuing support for the open source version of Grid Engine and was also shutting down the CollabNet site (gridengine.sunsource.net), and the subsequent exodus of Grid Engine’s expertise to Univa. Those affected by the news had to decide whether to take their chances with the open source version, purchase Univa’s commercial Grid Engine offering, utilize one of the Grid Engine forks, or migrate to another workload manager altogether.

Platform officials state that while there are multiple Grid Engine paths, there is only one Platform LSF, and it has retained backwards compatibility for over 18 years. They describe their solutions as offering easy-to-use management capabilities, such as cluster provisioning, workload management, automated workflow, and monitoring and analysis, accessible through a unified Web interface. Platform LSF and Platform HPC also include application integration templates for ISV applications.

Chris Collins, head of Research Computing Services, University of East Anglia, commented on the university’s experience with the migration tool:

We are very pleased with the results of our decision to partner with Viglen to migrate to Platform Computing. The robust capabilities in Platform HPC will enable us to lower power consumption and increase collaboration between different departments in the University. The Windows/Linux dual boot functionality will help make HPC more accessible to other researchers, who are not traditionally HPC/Linux users. In addition, the easy-to-use interface will make it simpler to capture metrics such as resource usage per user, helping ensure that we are achieving optimal resource utilization as well as facilitating accurate billing for system resource usage.

PGI Updates Compilers, Development Tools

The Portland Group (PGI) has released PGI 2011, its latest line of high-performance parallelizing compilers and development tools for Linux, Mac OS X and Windows. This is the first general release to provide full support for the PGI Accelerator programming model 1.2 specification on x64 processor-based systems incorporating NVIDIA CUDA GPUs. The new PGI release offers several other enhancements for multicore x64 processor-based HPC systems.

The latest Intel and AMD microprocessors will be supported, as outlined in the following text:

New features and enhancements include support for the new Advanced Vector Extensions to the x64 instruction set architecture (AVX) in upcoming Intel Sandy Bridge and AMD Bulldozer CPUs, support for the Fortran 2003 language standard, enhancements in C++ performance through default fast exception handling and improved Boost C++ libraries support, OpenMP nested parallelism, new memory-hierarchy optimizations, debugger improvements including compact parallel register displays and tab-based sub-windows, and performance profiler enhancements to simplify browsing of multi-core profiles. The 2011 release also supports GPU performance profiling and benefits from revamped packaging for faster download and installation.

PGI has been working with NVIDIA on integrating CUDA support into their tools. Sanford Russell, director of CUDA marketing at NVIDIA, comments on the partnership:

The continuing evolution of the PGI compilers to support the CUDA parallel architecture ensures that applications developed by more than 100,000 CUDA developers worldwide can be portable to all types of HPC systems. This trend will clearly continue with the upcoming release of the CUDA-x86 compiler, enabling developers to compile and optimize their CUDA applications to run on x86-based systems.

Planned updates for the PGI 2011 software due out this year will include a PGI CUDA C/C++ compiler that allows developers to port CUDA programs to any multicore x64 processor-based system with or without NVIDIA GPU accelerators.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire