With Windows Support, SGI Casts Altix UV in New Light

By Michael Feldman

April 3, 2011

SGI has been getting a lot of mileage out of its SGI UV shared memory platform, having delivered close to 500 systems since it started shipping them in June 2010. Now, with the recent addition of support for Microsoft’s Windows Server, the company is looking to expand its customer base in a big way.

Altix UV, SGI’s latest generation shared-memory supercomputer, was introduced at the Supercomputing Conference in November 2009. It uses SGI’s fifth generation NUMAlink interconnect technology and Intel “Nehalem” Xeon processors to construct HPC-class SMP server nodes. The interconnect, along with the special UV hub chip, glue all the processors and memory together so that they can be operated as a monolithic resource. A fully tricked-out Altix UV 1000 will have 2,048 cores (4,096 threads via HyperThreading) and 16 TB of globally shared memory. A maximally configured machine represents 18.5 teraflops of peak performance.

Being able to command all that power within a single system image has a number of advantages, the main one being you can run standard (non-MPI) applications on a machine that for all intents and purposes behaves as an enormous PC with gobs of cores and memory at its disposal. And, by definition, such a system doesn’t require the complex set-up, software licensing, and maintenance of a distributed cluster platform — not an easy task as you approach the 1000-core realm.

Up until a few weeks ago, Altix UV came only with Linux, either Novell’s SUSE or Red Hat’s enterprise version. In early March, support was added for Microsoft Windows Server 2008 R2. The first iteration supported up to 128 cores and 1 TB of memory. On March 25, the company announced Windows Server was certified to the OS’s maximum reach: 256 cores and 2 TB of memory.

IBM and HP also have large shared memory x86-based servers with Windows Server support. But IBM’s X3950 and HP’s Proliant DL980 G7 top out at 96 and 64, respectively — well below the Windows Server limits. “Our engineering work finally brings Windows into true scalability,” says SGI CEO Mark Barrenechea.

On the other hand, Itanium-based platforms on Windows can scale to 128 cores. But with the new UV-Windows set-up, those customers (principally HP Integrity users) can now migrate their codes to SGI UV gear and achieve even greater scalability, at least on the core-count side. Itaniums still prevail in memory reach, being able to access up 128 TB.

Barrenechea says they’re targeting two major application areas with this system, the first being SGI’s traditional technical computing market. The top five application suites they expect will take advantage of the Windows-UV combo are ANSYS FLUENT, MATLAB, Mathematica, LS-Dyna, and Accelerys. These run the gamut from CFD and FEA, to computational chemistry and computational biology.

The idea here is to allow scientists to take their PC-based codes and easily slide them into these big memory UV machines with little if any porting work. In some cases, they won’t even need to perform a recompilation. A PC binary should be able to run unaltered on the Xeon-based machine (although maybe not optimally), and if the code was written correctly, will automagically take advantage of the larger memory. Of course, to utilize additional UV cores, the developer will have to parallelize the code via OpenMP threading or the equivalent.

But many of these applications are constrained only by available memory, (requiring just one to four threads to do their job). Since a typical PC isn’t going to have more than a few gigabytes of RAM, the data sizes are going to be rather limited when it comes a traditional HPC simulation code. Even a relatively modest-sized four-dimensional array of 1000 x 1000 x 1000 x 1000 byte-sized elements (for say a 3D object moving through time) will occupy an entire terabyte.

At the recent HPCC conference in Newport, Rhode Island, SGI CTO Dr. Eng Lim Goh demonstrated a simulation of the human heart developed at the University of Montreal. On a laptop, because of the limited memory, it could only be run with 60 million grid points. That delivered a rather poor resolution of the heart in action. Moving it to an Altix UV machine with 1.2 TB of memory, the model was expanded to 2 billion grid points, providing a much more realistic model.

At that scale, the simulation still took two weeks to compute a single heartbeat. Goh suggested that parallelizing the code to take advantage of the additional UV cores (768 in this case) might be able speed up the model to something close to real-time.

But big memory is not just for technical workloads. The second major application area for a Windows-capable Altix UV is on the enterprise side, in the realm of data-intensive applications. In particular, we’re talking about data warehousing, data mining, business intelligence and related types of tools. The driver behind these applications is Microsoft’s SQL Server, whose support was added in conjunction with the Windows Server OS.

This area represents a new market for SGI, although some of these customers have HPC leanings as well. In general, though, any informatics-type application that encapsulates terascale-sized structured databases is fair game for an Altix UV. The fact that many of these codes are developed in and for a Microsoft environment means there is now an easier path to greater scalability.

Barrenechea considers SGI’s entry into Microsoft’s software ecosystem a significant step for them. “Sure, we’ve supported Windows and certified it,” he says, ‘but it’s a new focus for the company.”

Of course, Linux will be the operating system of choice for most HPC users. And, in fact, Altix UV scalability is still better on that OS. Red Hat Enterprise Linux 6 reaches to 8 TB of memory, while SUSE Linux Enterprise Server 11 hits the full 16 TB. Conveniently, Linux also supports all 2,048 cores of a top-end UV, although it’s hard to imagine an SMP-based code scaled to that level.

It should be noted that the memory limit on the Altix UV is actually constrained by the current generation of Xeon chips, whose 44-bit addressing scheme maxes out at 16 TB. If your data outgrows that capacity, Intel’s next-generation “Sandy Bridge” Xeons will add a couple more bits to quadruple its memory reach to 64 TB. According to SGI’s Goh, the company plans to support the new chips in an upcoming version of the Altix UV, and already have one order for such a system.

Core counts on the next-generation Altix UV may rise as well, although the most acute demand will remain on the memory capacity side. In any case, one or more of the supported OS’s will likely be tweaked to support any new limits SGI comes up with in future UV hardware.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire