TACC Steps Up to the MIC

By Michael Feldman

April 21, 2011

As Intel prepares to roll out its Many Integrated Core (MIC) technology for commercial production in 2012, it has managed to entice a major US supercomputing center to start porting some of its science codes to the new architecture. The Texas Advanced Computing Center (TACC) announced it has teamed up with the chipmaker and begun porting a handful of research applications to the pre-production “Knights Ferry” MIC processor. Later this year, TACC will build a cluster of such chips for further development, with the intent to deploy a system based on the commercial “Knights Corner” MIC processor when Intel starts production.

MIC represents Intel’s entry into the HPC processor accelerator sweepstakes, as the company attempts to perform an end-run around GPU computing. Mainly thanks to NVIDIA, over the last few years GPU computing, aka GPGPU, has become a mainstream HPC solution across workstations, clusters and supercomputers. They rely on specialized programming environments, like CUDA and OpenCL, to develop software on those platforms.

As suggested by its name, MIC is essentially an x86 processor, with more cores (but simpler ones) than a standard x86 CPU, an extra-wide SIMD unit for heavy duty vector math, and four-way SMT threading. As such, it’s meant to speed up codes that can exploit much higher levels of parallelization than can be had on standard x86 parts.

Knights Ferry is Intel’s development implementation spun out of the chipmaker’s abandoned Larrabee processor effort for visual computing. The chip sports 32 IA cores and runs at 1.2 GHz. Since each core supports a four-way SMP (as opposed to the two-way HyperThreading on Xeons), each chip can manage up to 128 threads in parallel. Memory-wise, Knights Ferry has 8 MB of cache and 1 to 2 GB of GPU-flavored GDDR5 DRAM. Like its current GPGPU competition, Knights Ferry is meant to be hooked up to a PCIe bus, acting as a co-processor to a standard x86 CPU.

Knights Corner will be Intel’s first commercial version of MIC, will have upwards of 50 cores per chip, and will be implemented on the company’s 22nm process technology. Although no official date has been announced for the commercial launch, according to a presentation by Intel research engineer Pradeep Dubey at the recent 2011 Open Fabrics International Workshop in Monterey, Knights Corner is slated for release sometime in the second half of 2012.

At this point, TACC is using the MIC software development kit (SDK), employing a Knights Ferry chip attached to a single machine. According to TACC’s deputy director Dan Stanzione, they are planning to build a “relatively small” cluster of Knights Ferry-equipped nodes to test codes in a distributed computing environment before the end of the year.

On Thursday, I spoke with Stanzione, who was very upbeat about the new architecture, noting that the x86 compatibility is a big deal for TeraGrid researchers. In aggregate, they have a massive investment in their science codes, numbering in the hundreds.

“This is a way to get a dramatically better power per operation without having to throw out everything we know about software,” he said, adding, “I’m really excited about this as a path forward. I think it has the potential to be a real game-changer.”

One nice feature of MIC programming is that it inherently supports OpenMP, a popular parallel computing model for shared memory environments. And since Intel’s HPC tool chain — Parallel Studio and Cluster Studio — has been extended to the MIC architecture, the programmer can even stay in the same development environment for both its Xeon and MIC work — which, of course, Intel would like very much.

The result is that OpenMP code written for four-core or six-core x86 CPUs, like some of the ones TACC has started porting, should move rather easily to a 32-core MIC co-processor. “Getting the codes to run the first time is pretty simple,” Stanzione said, adding that when they move to the MIC cluster, they’ll have to figure out how to layer an MPI distributed memory model on top of that.

According to him, they’ve already ported a bunch of benchmark codes and have started with the applications. One is a bio-modeling app, which attempts to detect epistatic interactions (how genes modify each other to express a phenotype) across a corn genome. The code was thousands of lines long, but because it was parallelized via OpenMP, it moved to MIC with minimal restructuring.

Although TACC has committed resources to the MIC effort, Stanzione said they are evaluating hardware and software accelerator approaches across the spectrum, most notably using CUDA and OpenCL on GPUs. (TACC’s Longhorn supercomputer is currently the center’s largest GPU platform, sporting 512 NVIDIA Tesla processors.) Although it’s too early to compare performance across specific applications, it’s already apparent that porting is much simpler with Intel’s offering.

“Moving a code to MIC might involve sitting down and adding a couple of lines of directives that takes a few minutes,” explained Stanzione. “Moving a code to a GPU is a project.”

Although measuring performance is still a work in progress, the early results on scaling appear to be encouraging. According to Stanzione, doubling the number of MIC cores has roughly doubled the performance on some of the initial codes. They expect to be able to say a lot more about performance when they get the Knights Corner commercial parts.

From Intel’s point of view, getting TACC to sign on to MIC development is a big boost for its manycore effort. Assuming the porting goes as planned, the chipmaker will be able to point to a nice set of proof points based on real-world HPC applications. According to John Hengeveld, Intel’s director of technical compute marketing for its datacenter group, they’ll be able to incorporate TACC’s experience into the upcoming delivery of Knights Corner parts and software. “Having a partner that is helping us work on issues of scalability and optimization is really quite valuable,” he explained.

Although TACC is the first big HPC organization with a committed roadmap for MIC development, they won’t be the last. Intel currently has about 100 MIC developers scattered around, and according to Hengeveld, they’ll be announcing some bigger collaborations in the months ahead. And as we get closer to MIC’s commercial release, the news surrounding the new architecture should start to pick up. “We’ll be talking a lot more about this at ISC,” promised Hengeveld.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire