Sun Cofounder Evangelizes Liquid Blade Server

By Michael Feldman

May 4, 2011

What does a Sun Microsystems cofounder do with his spare time? Well, if you’re Scott McNealy, you spend some if it lending your expertise to promising tech vendors that are looking to break into the IT big leagues. One such company that he has taken a personal interest in is Hardcore Computer, which recently introduced a line of servers that use liquid submersion technology. HPCwire spoke with McNealy to get his take on the technology and to ask him why he thinks the company deserves the spotlight.

McNealy signed on as a non-paid advisor and consultant with Hardcore in January at the behest of longtime friend and former Stanford classmate Doug Burgum. Burgum’s venture firm, Kilbourne Group, has invested in Hardcore, a Rochester, Minnesota-based computer maker that specializes in high performance gear based on the company’s patented liquid submersion cooling technology.

“This is one of the few companies innovating on top of the Intel architecture — rather than just strapping a power supply on and porting Linux,” McNealy told HPCwire.

Hardcore makes a range of liquid-cooled offerings, including desktops, workstations, and servers. Its latest offering is the “Liquid Blade,” a server line the company announced in May 2010 and launched in November at the Supercomputing Conference in New Orleans (SC10). The new blade is more or less a standard dual-socket x86-based blade using Intel Xeon 5500 and 5600 Xeon parts. It sports eight DDR3 memory slots per CPU, six SATA slots for storage, and a PCIe x16 slot for a GPU card or other external device.

Liquid Blade’s secret sauce — and in this case it literally is a sauce — is Hardcore’s patented liquid submersion technology. The company uses a proprietary dielectric fluid, called Core Coolant, to entirely submerge the blades within a specially-built 5U rack-mounted chassis. The coolant is inert, biodegradable, and most importantly non-conductive, so all of the electrical components inside the server are protected.

As with any liquid coolant, the idea is to draw off the excess heat much more efficiently than an air-cooled setup and ensure all the server components are keep comfortably cool even under maximum load. According to the company literature, the Core Coolant has 1,350 times the cooling capacity of air. Since the coolant is so effective at heat dissipation and the internal fans have been dispensed with, the server components can be packed rather densely. In this case the 5U Hardcore chassis can house up to seven of the dual-socket blades.

The company launched its liquid-dipped server at SC10 last November to get the attention of the HPC community, but the offering is suitable for any installation where the datacenter is constrained by power and space. Besides HPC centers, these include DoD facilities, telco firms, and Internet service providers. “You have to look at the users who think at scale and have a huge electric bill,” explains McNealy.

The datacenter cooling problem is well-known, of course. As servers get packed with hotter and faster chips and datacenters scale up to meet growing demand, getting enough power and space has become increasingly challenging. Datacenter cooling has traditionally relied on air conditioning, but air makes for a poor heat exchange medium, and it’s hard to direct it where it’s most needed. “Air goes everywhere but where you want it to,” laughs McNealy. Cooling a hot server, he says is “like trying to blow a candle out from the other side of the room.”

Because of the density of the Hardcore solution, you need about 50 percent fewer racks to deliver the same compute. And since the blades essentially never overheat, one can expect better reliability and longevity. As any datacenter administrator knows, heat is a major cause of server mortality, especially in facilities filled to capacity.

But the really big savings is on the power side. Since cooling and the associated equipment take up such a large chunk of a datacenter energy budget, any effort to reduce these costs tends to pay for itself in just a few years. An independent study found that a Liquid Blade setup could reduce datacenter cooling costs by up to 80 percent and operating costs by up to 25 percent.

Hardcore isn’t alone in the liquid submersion biz. Other companies, most notably Austin-based Green Revolution, are providing these types of products. In the case of Green Revolution, they offer a general-purpose solution for all sorts of hardware — rack servers, blades, and network switches. The company will strip down the gear to its essentials and immerse the components in a specially-built 42U enclosure filled with an inert mineral oil.

But since Hardcore is dunking its own servers, it has the option to build high performance gear that would be impractical to run in an air-cooled environment. As McNealy points out, the efficient liquid cooling is a natural for the highest bin x86 chips running the fastest clocks. For example, the company could stuff Intel’s latest 4.4 GHz Xeon 5600 processors into its blades, and offer a special-purpose product for high frequency traders (as Appro has done, sans immersive liquid cooling, with its HF1 servers). Hardcore has never talked about such a setup for HFT, but it does tout the servers outfitted with high wattage graphics cards for GPGPU type computation. Applications using such capabilities include medical imaging, CGI rendering, engineering simulation and modeling and web-based gaming.

One the things McNealy has been working with the Hardcore people on is getting an apples-to-apples comparison of their liquid cooled gear versus conventional air-cooled servers. To do this, he says, you have come up with a higher level analysis that takes into account the service cost over the entire datacenter.

According to the company, the cost of a Liquid Blade setup is on par with a comparably equipped air-cooled product since all the fans are eliminated and the chassis design is simpler. If a user opted for Liquid Blade when it came time to upgrade their servers, they could start to realize energy costs savings immediately. But the big savings occur when a datacenter can be built from scratch with liquid submersion in mind.

In that case, the datacenter can dispense with a lot of the CRAC units, use 12-foot ceilings instead of 16-foot ones (no overhead air ductwork is needed), and use less UPS units thanks to reduced power requirements. The only extra cost comes with the chilled water to oil heat exchangers used to draw the heat from the chassis coolant. Also, since you can fit more servers into the same space, the datacenter floor space can be reduced by about 30 percent for a given compute capacity.

So why isn’t everyone flocking to liquid submersion? Customer inertia, says McNealy. According to him, he’s spent most of his career knowing the right thing to do and trying to get others to realize it themselves.

With Hardcore, the challenge is that most organizations are already set up with their existing air-cooled facilities, so a lot of the cost incentives for the big switch aren’t there. He thinks if a large Internet service provider bought into this technology for a new datacenter, the business could quickly take off. For McNealy’s Sun, that tipping point was in the late 80s when Computervision made a big deal to go with his company’s Unix-based workstations. Hardcore, no doubt would love to repeat history, this time with the likes of Google, Amazon, or Facebook.

“Their biggest challenges is the barrier to exit from the old strategy, not the barrier to entry to the new one,” says McNealy.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire