International Project Readies Climate Models For Exascale Era

By Michael Feldman

May 12, 2011

However well-meaning, the efforts of individual nations to curb climate change will always fall short. Given that climate does not respect national borders, global cooperation will be the key to any solution. While international political cooperation to deal with the issue has been frustratingly slow, at least one aspect of the problem is now getting some global focus: climate modeling.

The first international effort to bring climate simulation software onto the next-generation exascale platforms got underway earlier this spring. The project, named Enabling Climate Simulation (ECS) at Extreme Scale, is being funded by the G8 Research Councils Initiative on Multilateral Research and brings together some of the heavy-weight organizations in climate research and computer science, not to mention some of the top supercomputers on the planet.

This project came out of the ongoing collaboration of University of Illinois at Urbana-Champaign (UIUC) and the French National Institute for Research in Computer Science and Control (INRIA) though their Joint Laboratory for Petascale Computing and takes advantage of the support of NCSA, which will provide access to the upcoming multi-petaflop Blue Waters system.

In a nutshell, the objective of the G8 ECS project is to investigate how to efficiently run climate simulations on future exascale systems and get correct results. It will focus on three main topics: (1) how to complete simulations with correct results despite frequent system failures; (2) how to exploit hierarchical computers with hardware accelerators close to their peak performance; and (3) how to run efficient simulations with 1 billion threads. This project also aims at educate new generations of climate and computer scientists about techniques for high performance computing at extreme scale.

The team is led by the UIUC’s Marc Snir (project director), and INRIA’s Franck Cappello (associate director). It gathers researchers from five of the G8 nations: the US (University of Illinois at Urbana Champaign, University of Tennessee and National Center for Atmospheric Research), France (INRIA), Germany (German Research School for Simulation Sciences), Japan (Tokyo Tech and University of Tsukuba), Canada (University of Victoria) and Spain (Barcelona Supercomputing Center).

HPCwire got the opportunity to ask project director Mark Snir and atmospheric scientist Don Wuebbles at UIUC and INRIA’s Franck Cappello about the particulars of the G8 ECS effort and to provide some perspective on what it means to the climate research and computer science communities.

HPCwire: How do the current climate models that are being run on terascale and petascale systems fall short?

Don Wuebbles: There is a strong need to run global climate models with detailed treatments of atmospheric, land, ocean, and biospheric processes at very high resolution, with the newest generation of climate models that can be run on petascale computers being able to get to a horizontal resolution of as low as about 13 kilometers. Such a capability allows for many relevant processes to be treated without having to make the severe approximations and parameterizations found in the models used in previous climate assessments.

As an example, it is now known that ocean models need to be run at roughly a tenth of a degree or about 10 kilometers horizontal resolution in order to adequately represent ocean eddy processes. Even on a petascale machine, only a limited number of runs can be done with the new high resolution models. A exascale machine will allow for even high resolution as new dynamical cores are developed. Even more important though is that ensembles of the climate analyses extending over many hundreds of years can be run, thus allowing better representation of natural variability in the climate system.

In addition, exascale computing will allow for well-characterized studies of the uncertainties in modeling of the climate system that are impossible on current computer systems because of the extensive resources required.

HPCwire: Will  ECS effort be able leverage any of the work done by the International Exacale Software Project (IESP)?

Marc Snir: Many partners of the project are active participants of IESP either as leader, members of the executive committee or experts of IESP. The research program has been defined taking into account the IESP results. IESP work was a instrumental in the clarification of the challenges and the definition of the research scope in the three main topic of our ECS project. Our project also carefully followed the discussions within the European Exascale Software Initiative (EESI) and Japan, where several G8 ECS partners are playing leading roles. IESP was instrumental in motivating the RFP that was issued jointly by seven of the G8 countries. However, one should remember that IESP established a roadmap. New collaborations are needed to implement it. The program that funds us and five other projects is a (very modest) first step in this direction.

HPCwire: What kinds of assumptions will have to be made about the future exascale systems to redesign the software?

Franck Cappello: We tried to take reasonable assumptions according to the current state of the art, the projections made in the exascale preparation reports and discussions with hardware developers. These assumptions are essentially following the ones considered in IESP. Exascale systems are likely to have hybrid (SIMD plus sequential) cores, hundreds of cores per chip, many chips per nodes and deep memory hierarchies. Another important element is the uncertainty about the system MTBF predictions. This essentially will depends on the level of masking provided by the hardware.

A key choice in our project was to test our research idea on a significant variety of available HPC systems: Blue Waters, Blue Gene P and Q, Tsubame2, the K machine in Kobe and Marenostrum2. We believe that what we will learn by testing our improvements on these machines will help us to better prepare climate code for exascale.

HPCwire: What kinds of changes to today’s climate simulations do you anticipate to bring this software into the exascale realm?

Cappello: Our project focuses on three key issues: system level scalability, node level performance and resilience. No existing climate model scales to the order of a million cores. Thus, studying system level scalability is a critical. The main research driver is to preserve locality, since strong locality will be crucial for performance. We shall explore three key areas: topology and computation-intensity-aware mappings of simulation processes to system, communication-computation overlap, and the use of asynchronous collective communications.

Concerning node level performance, we shall explore modeling and auto-tuning/scheduling of intra-node heterogeneity with massive numbers of cores, for example, GPUs; exploiting locality and latency hiding extensively to mitigate the performance impact of intra-node traffic; and studying task parallelism for the physics modules in the atmosphere model.

ECS will address resilience from multiple complementary approaches, including resilient climate simulation algorithms, new programming extensions for resilience, and new fault tolerant protocols for uncoordinated checkpointing and partial restart. These three approaches could be considered as three levels of failure management, each level being triggered when the previous one is not enough to recover the execution.

Our work is by no means a full solution to the problem of exascale climate simulations. New algorithms will be needed. There is another G8 project that looks at algorithm changes to enhance scalability.

New programming models may be needed to better support fine-grain communication and load balancing. Some of us are involved in other projects that focus on this problem. However, our work is, to a large extent, agnostic on these issues.

HPCwire: By the time the first exascale systems appear in 2018 to 2020, climate change will almost certainly be much further along than it is now. Assuming we’re able move the software onto these exascale platforms and obtain a much more accurate representation of the climate system, what will policy makers be able to do with these results?

Snir: I suspect that all participants in our project believe that the time to act on global warming is now, not ten years from now. The unfortunate situation is that we seem incapable of radical action, for a variety of reasons. It is hard to have international action when any individual country will be better served by shirking its duties — the prisoner’s paradox — and it is hard to act when the cost of action is immediate and the reward is far in the future.

As unfortunate as this is, we might have to think of mitigation, rather than remediation. More accurate simulations will decrease the existing uncertainty about the rate of global warming and its effects; and will be needed to assess the effect of unmitigated climate change, and the effect of various mitigation actions. Current simulations use 100 km grids. At that scale, California is represented by a few points, with no discrimination between Coast Range and Central Valley, or Coastal Range and Sacrament-San Joaquin Delta. Clearly, global warming will have very different effects on these different geographies. With better simulations, each House member will know how his or her district will be impacted.

HPCwire: How much funding is available for this work and over what time period? Is each country contributing?

Cappello: This three-year project receives G8 coordinated funding from the Natural Sciences and Engineering Research Council of Canada (NSERC), French National Research Agency (ANR), German Research Foundation (DFG), Japan Society for the Promotion of Science (JSPS) and the National Science Foundation (NSF). This project, together with five other projects, was funded as part of the G8 Research Councils Initiative on Multilateral Research, Interdisciplinary Program on Application Software towards Exascale Computing for Global Scale Issues.

This is the first initiative of its kind to foster broad international collaboration on the research needed to enable effective use of future exascale platforms. The total funding for this initiative is modest, about 10 million euros over 3 years, spread over 6 projects.

HPCwire: Is that enough money to meet the goals of the project? Do you anticipate follow-on funding?

Snir: The project has received enough money to fund the research phase and develop separated prototypes on the three main topics. Our focus is on understanding the limitations of current codes and developing a methodology for making future codes more performing and more resilient. The development of these future codes will require significantly higher funding. We expect to collaborate with other teams that are continuing to improve climate codes and seek future funding to continue our work as new codes are developed.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from its predecessors, including the red-hot H100 and A100 GPUs. Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. While Nvidia may not spring to mind when thinking of the quant Read more…

2024 Winter Classic: Meet the HPE Mentors

March 18, 2024

The latest installment of the 2024 Winter Classic Studio Update Show features our interview with the HPE mentor team who introduced our student teams to the joys (and potential sorrows) of the HPL (LINPACK) and accompany Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the field was normalized for boys in 1969 when the Apollo 11 missi Read more…

Apple Buys DarwinAI Deepening its AI Push According to Report

March 14, 2024

Apple has purchased Canadian AI startup DarwinAI according to a Bloomberg report today. Apparently the deal was done early this year but still hasn’t been publicly announced according to the report. Apple is preparing Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimization algorithms to iteratively refine their parameters until Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, code-named Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Survey of Rapid Training Methods for Neural Networks

March 14, 2024

Artificial neural networks are computing systems with interconnected layers that process and learn from data. During training, neural networks utilize optimizat Read more…

PASQAL Issues Roadmap to 10,000 Qubits in 2026 and Fault Tolerance in 2028

March 13, 2024

Paris-based PASQAL, a developer of neutral atom-based quantum computers, yesterday issued a roadmap for delivering systems with 10,000 physical qubits in 2026 a Read more…

India Is an AI Powerhouse Waiting to Happen, but Challenges Await

March 12, 2024

The Indian government is pushing full speed ahead to make the country an attractive technology base, especially in the hot fields of AI and semiconductors, but Read more…

Charles Tahan Exits National Quantum Coordination Office

March 12, 2024

(March 1, 2024) My first official day at the White House Office of Science and Technology Policy (OSTP) was June 15, 2020, during the depths of the COVID-19 loc Read more…

AI Bias In the Spotlight On International Women’s Day

March 11, 2024

What impact does AI bias have on women and girls? What can people do to increase female participation in the AI field? These are some of the questions the tech Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire